
Insecurity in Security Software

Maik Morgenstern
Andreas Marx
AV-Test GmbH

http://www.av-test.org

Virus Bulletin 2005 Conference presentation about “Insecurity in Security Software”
Copyright © 2005 AV-Test GmbH, Klewitzstr. 6, D-39112 Magdeburg, Germany
Phone: +49 391 6075460, Fax: +49 391 6075469, http://www.av-test.org

http://www.av-test.org
http://www.av-test.org


Table of content

l The paradox
l Types of security software
l Comparison of CVE advisories
l Examples of bugs and security vulnerabilities
l Why bugs occur
l Vulnerability lifecycle
l What to do? (for users and developers)
l Trustworthy computing development lifecycle



The paradox

l All software products contains security 
vulnerabilities (and other bugs)

l AV software is widely deployed to protect 
companies, organizations and home users

l Every week, security flaws are discovered in 
different AV products

l The paradox: Security software is meant to 
secure the system, but nowadays it 
introduces new security holes.



Types of security software

l Two different groups of security software:
– Home and business user software (widely used)

l Firewalls
l IPSec products
l IDS/IPS
l AV software…

– Tools used by researchers (small deployment)
l IDA Pro
l OllyDbg
l Softice…



CVE advisories for vendor products
(2001 quarterly average = 100, Source: © The Yankee Group)

l Microsoft / Security vendors / All vendors



Bug leading to a security vulnerability

l A couple of examples from the last months (advisory titles):
– ISS and the Witty Worm
– Trend Micro VSAPI ARJ parsing
– McAfee Virus Library
– Symantec Multiple Products UPX Parsing Engine Heap Overflow
– Computer Associates Vet Antivirus Library Remote Heap Overflow
– Kaspersky AntiVirus "klif.sys" Privilege Escalation Vulnerability
– OllyDbg "INT3 AT" Format String Vulnerability
– DataRescue IDA Pro Dynamic Link Library Format String 

Vulnerability
– Clam AntiVirus ClamAV Cabinet File Handling DoS Vulnerability



Bugs vs. security vulnerabilities

l Some more examples of the last months:
– Trend Micro Virus Sig 594 causes systems to experience 

high CPU utilization
– Windows NTFS Alternate Data Streams
– Archive Problems
– BitDefender bug bites GFI
– Panda AntiVirus deleting Tobit David communications 

software
– Symantec Brightmail AntiSpam Static Database Password
– McAfee Internet Security Suite 2005 Insecure File 

Permission



Why bugs occur: 3 main factors 

l Technical factors
– The underlying complexity of the task itself

l Psychological factors 
– The “mental models,” for example, that make it hard for 

human beings to design and implement secure software
l Real-world factors 

– Economic and other social factors that work against security 
quality

l Source: Mark G. Graff, Kenneth R. van Wyk, ‘Secure Coding: 
Principles & Practices’, O'Reilly, 2003



Vulnerability lifecycle

l A never-ending story!
1. Discover vulnerability
2. Develop patch
3. Get alert and install patch
4. Goto 1

l Source: Mark G. Graff, Kenneth R. van Wyk, ‘Secure Coding: 
Principles & Practices’, O'Reilly, 2003



What to do? (I)

l Corporate users:
– Update your products frequently!
– … not only signature files in case of AV software, 

but really all components (e.g. engine, GUI)!
– Read publicly available information about newly 

discovered flaws and don‘t call the people first
– Try to shorten test intervals (months vs. weeks) 

for security vulnerability related updates
– “Scan throughput” is not the only important thing!



What to do? (II)

l Software developers:
– Check your old “known-working” code
– Check for updates of 3rd party software included 

in your products
– File format “Sandbox” (enforce protocol)
– Strategy to use minimal rights only whenever 

possible (do not use Administrator or Root rights)
– Create easy update deployment mechanisms



Trustworthy computing
development lifecycle (I)

l Four principles of secure development:
– Secure by design
– Secure by default
– Secure in deployment
– Communications

l Source: Steve Lipner, Michael Howard, ‘The Trustworthy 
Computing Security Development Lifecycle’, Microsoft 2005



Trustworthy computing
development lifecycle (II)

l Example (Microsoft‘s suggestions):
– Implementation phase:

l Apply coding and testing standards
l Apply security-testing tools including fuzzy logic
l Apply static analysis code scanning tools
l Conduct code reviews

l Source: Steve Lipner, Michael Howard, ‘The Trustworthy 
Computing Security Development Lifecycle’, Microsoft 2005



Summary

l Security vulnerabilities are an industry-wide problem
l Microsoft isn’t the only target today anymore
l Every error could be security relevant when it 

happens in security software!
l Proactive actions (e.g. automated and manual code 

reviews, rewriting of code) has to be considered
l Implement several layers of security (“Sandbox”)
l Responsible way of updating: “Update often, update 

early, not too often and not too early”



Any questions?

l Are there any questions?


