
14 • VIRUS BULLETIN JANUARY 2002

VIRUS BULLETIN ©2002 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England. Tel +44 1235 555139. /2002/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

Trouble Makers
Andreas Marx, AV-Test.org

University of Magdeburg

It is a fact that no software – besides a single ‘Hello World’
program – is completely free of bugs or unintended side-
effects. This applies not only to operating systems and
Office applications, but also to anti-virus software.

Today’s anti-virus scanners are very complex pieces of
software. A small mistake in the program code or virus
definitions can result in a small problem, such as a miss of a
non-ItW virus, or a much bigger problem such as a crash –
which is particularly serious if the program protects a server
or Groupware system. Stability is one of the most important
issues here: scan all incoming and outgoing traffic, but
please don’t crash!

History Lessons

In history we have had a few good examples of such
crashes, especially on damaged or corrupted files. I can
remember a problem in Dr. Solomon’s anti-virus solution
when scanning a 32-byte-long EXE file: only the normal
MZ header was available, but the rest of the file was
missing. This caused an exception fault in the command-
line scanner.

OLE2 files also caused a lot of trouble in the past. The first
macro virus scanners used the Microsoft OLE implementa-
tion, which worked quite well for standard files, but usually
caused problems if the files were slightly damaged. Very
fast, vendor-own implementations were developed, which
included proper error checks to avoid crashes or infinite
loops in the internal OLE file structure.

A few years later, Costin Raiu published an article in Virus
Bulletin called ‘The Little Fixed Variable Constant’ (see VB
October 1999, p.8), which discussed OLE documents
having a 4 KB block size instead of the standard 512 bytes.
A lot of programs simply ignored the files or did not find
any virus, which could be fixed in later releases, because it
was only an academic issue. However, at least two pro-
grams crashed – and that should not happen.

Usually, such malformed documents do not exist in a
(relatively) trusted environment, such as within an organiza-
tion. However, an attacker can send nearly anything to a
company using email. These emails could contain viruses,
may be malformed and so on, and their content can never
be trusted. Usually, these will be scanned at the email
gateway or – if this does not exist – in the Groupware
environment, such as Exchange or Notes. And now the files
are in the middle of an important, trusted environment, but
still they can contain nearly any surprise.

In the Archives

On the Bugtraq mailing list a few months ago there was a
posting about archive files like ZIP or ARJ, which contain
files with names such as ‘NUL.EXE’ or ‘../NAME.EXE’
(see http://www.securityfocus.com/archive/1/196965). The
author looked at standard unpackers and found many
problems: file names with reserved DOS names such as
NUL, CLOCK$, AUX or PRN can cause Windows 9x-based
systems to crash or simply to print out a file during extrac-
tion. Windows NT-based systems were not immune, but the
trouble was limited.

We investigated how virus scanners would react if they
found such a file: only one program crashed out of about 30
tested, but only two thirds were able to detect the viruses
inside these files. In particular, this happens if they try to
extract the file to disk under the name which is stored in the
archive, which is not possible. A random name should be
used instead, or the file should be scanned in memory –
consider memory-mapped files in Win32 environments or a
RAM disk, for example.

However, this is only a small issue. A more interesting
method is to embed files in an archive which contains files
with names like ‘../NAME.EXE’. Such archives cannot be
created using standard Win32 tools, but can, for example,
under Unix-based systems.

However, I was too lazy to start VMware so put a file in an
archive with a name like ‘XX_NAME.EXE’ instead. Later,
I changed the ‘XX_’ to ‘../’ using a hex editor. It should be
noted that this has to be done at two positions in ZIP files
(simply use search and replace), but at only one location in
ARJ archives. And, of course, more than just one ‘../’ can be
used for this – I used it up to six times for a test.

Put to the Test

At first, I tested archive programs and observed that nearly
all of them were vulnerable and dropped the archived files
in nearly every available subdirectory on disk. Using a virus
scanner, the situation was much better: no command-line or
GUI version seemed to be affected, all ran fine, found the
virus and did not drop the files over the hard disk. Even
if the program does not scan the files in memory, it has
been extracted to a random file name in a temporary
subdirectory, ignoring paths.

Next, I looked at Exchange 2000 and mail gateway solu-
tions – not only anti-virus, but also content filtering
programs. Some of the products I encountered used the
standard unzip utilities which are not secure. Sure enough,
I was able to send an email with an archive and the files
within it were dropped to a special location on the
hard disk. Also, I was able to overwrite programs like

OPINION

VIRUS BULLETIN JANUARY 2002 • 15

VIRUS BULLETIN ©2002 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England. Tel +44 1235 555139. /2002/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

explorer.exe on Windows systems, because the extract
process acts with administrator rights. I shan’t continue
here, but just point out that it was very trivial to hijack such
an insecure system within minutes. Of course, I notified
the vendors of all programs about this issue (this was in
August 2001).

As a quick fix, I suggested putting the temporary (unzip)
directory into another partition or onto a RAM drive.
Following this, the systems were no longer affected by
the problem.

Following notification of the issue, a few of the vendors
responded that this problem is rather academic, but after I
sent them our test files inside unencrypted ZIP archives
(without viruses, but causing small problems on their own
mail Gateway), they realized that it is a real problem. :-)

Heavy Nesting

A few large companies suggested that we investigate what
happens if an anti-virus program has to scan a heavily-
nested ZIP archive.

I obtained a sample file called ‘42.ZIP’. This was a ZIP in a
ZIP in a ZIP etc. – it had six recursion layers, with 16 new
files inside every layer (size was about 2 GB in every case),
until I was able to see a file called ‘0.DLL’, that contained
only a few random (mostly zero) data. These data can be
compressed very easily, which meant that the ZIP file was
only 42 KB long.

The companies that had suggested this investigation had
encountered great problems at their mail gateways – script
kiddies had sent such files by email over and over again.
Most virus scanners require about two to three days(!) on an
Athlon 1,33 GHz system to scan such a file with 100%
CPU load.

Therefore, I suggest strongly that an option should be added
to all content security programs to set a time-out value
(e.g. 180 seconds) for a file such that, if this time-out is
reached, the file will be skipped, treated as a virus and
quarantined. Also this would help if the scan process
crashes unexpectedly.

An alternative would be to limit the maximum size of an
attachment to be delivered, but for our ‘42.ZIP’ example
this would be nearly useless, since it is already very small.
Finally, the number of recursion layers could be limited to
a ‘harmless’ three or four. The user could select the maxi-
mum number of layers in the main program according to
their requirements.

Testing Issues

We tested these issues in our last Exchange 2000 SP1
test (the results of which can be seen on the Web site
http://www.av-test.org/). Many programs had a problem
with 100% CPU load and in at least one there was an option
to limit the scan time, but this feature did not work.

Also, one email gateway scanner was unable to detect
Win32/Sircam due to the malformed (non-RFC) headers it
uses. The attachment was not found and the email was
delivered to the clients.

Following the Win32/Nimda outbreak, many vendors added
better detection for EML files in their scan engines, but
there was also a problem with ‘trusted data’.

One solution I tested internally reserved for memory
operations only the number of bytes the mail header
showed, which caused a buffer overflow if the attachment
was longer than expected. Another program crashed if the
attachment was truncated or if the MIME structure was
corrupted – this can easily happen automatically due to
transportation problems.

I can continue with Win32 runtime compressors – simply
attempt to change a few values in the main compressed files
and the decompression routine of a scanner shows unex-
pected behaviour. With a little information about the
compressed file structure and about which special tokens
have been used, it should not be a problem to create such
a file.

Of course, no scanner can find compressed worms or
viruses in such files any more and I do not expect this. The
only thing that should not happen is a crash of the scanner,
neither as a result of a GPF nor a 100% CPU load problem.

Engine Developers Take Note

My suggestion for engine developers is that they should
check all input from files carefully, especially all variables
that the program uses internally for pointers, to reserve
memory etc. I suggest that program developers include
features to limit the damage of problematic files, for
example setting a maximum scan layer for archives or a
simple time-out.

The internal QA should check the behaviour of the scanner
specifically on malformed files. This should include white
box testing, where the tester knows the internal structure of
the program and tries to find problematic routines, as well
as black box testing, where the tester modifies a file with
the intention of causing problems to the scan engine. This
can be done automatically where random parts of a file
which is likely to be problematic will be changed or
overwritten in a loop, until a problem occurs.

Testers Take Note

For magazine testers, my suggestion is to include mal-
formed files in a test set. It does not help a user if a scanner
finds nearly all infected files, has no false positives, and is
fast – but it crashes directly or requires 100% CPU load if it
receives a malformed file to scan from a non-trusted source,
such as the Internet. Currently, I suggest including only
easy malformed files, such as the archive files described
above. Later, we can add more problematic issues.

