
MALWARE REMOVAL – BEYOND CONTENT AND CONTEXT SCANNING MORGENSTERN & BROSCH

211VIRUS BULLETIN CONFERENCE SEPTEMBER 2007

MALWARE REMOVAL – BEYOND
CONTENT AND CONTEXT

SCANNING
Maik Morgenstern, Tom Brosch

AV-Test GmbH, Klewitzstr. 6, 39112 Magdeburg,
Germany

Tel +49 391 6075460
Email {mmorgen, tbrosch}@av-test.de

ABSTRACT
Detecting threats is only one of the things anti-malware
software needs to be capable of today. Removing malware,
often several hundred linked registry keys and files, has
become an equally important task. And this is where the
trouble begins, because content and context scanning is just
not enough to cope with it.

In this paper we will briefly discuss the problems of the usual
approaches in removing malware as well as adware and
spyware; why and where the programs fail. The programs may
miss files, registry keys and values or changes made by the
user to the default settings. Or even worse, they will just
ignore everything but the detected EXE file, simply because no
analysis has been carried out by the vendor yet, hence no
dedicated removal routines are known, let alone generic
removal routines. To support these points, the results of
extensive testing of different technologies will be presented.
And nearly all of them will face serious problems.

We will then look into other approaches which might help
solve the problem. Supervising the system and bugging the
user 100 times per hour is only one of the possible ‘solutions’.
A sandbox analysis of the malware might be another
interesting way to get an idea of what the malware did and
what should be removed or changed back. The paper will
conclude with a comparison of the different techniques.

THE NEED FOR COMPREHENSIVE
MALWARE REMOVAL
While there is consensus that malware removal is an integral
part of today’s anti-malware software, there are quite a few
different opinions on how far those removal procedures should
go. The most important point in removing malware is securing
the user and his PC system. According to Jason Bruce this
involves reversing some of the changes made to the system by
the malware [1, p.61]. The first steps necessary are therefore to
stop running malware processes and remove the linked
executable malware files. In addition to this, references to the
executables in the registry, such as Run keys, are often
removed too.

This is already an issue to argue about. When the files are
removed, the keys can’t do any more harm, so they could just
be left where they are. While this is certainly true, there are
several reasons why registry keys should be completely
cleaned anyway. Some of those reasons will also apply to files
which are not executables and/or not identified by
signature-based scanning, but which still belong to a certain
piece of malware. There are several reasons why threats should
be completely removed from a system.

Most importantly, a customer is only satisfied when all
components are detected and removed properly and all
modifications are reverted to their original values [1, p.61].

Secondly, some registry keys alone can be considered
malicious or unwanted and should therefore be removed or
changed to a default state. Examples include keys that set the
Search Assistant or the Internet Explorer start page to
malicious websites. But the same is true for keys and values
which change security settings to unsafe or unwanted states.
Most users don’t want their task manager being disabled by
malware or to have orphaned registry keys on their system.

Thirdly, there are registry keys which don’t belong to the
previous category but which produce annoying behaviour or
will disable some functionality. These include keys that
reference removed files, with the result of error messages at
the start-up of Windows.

Also, the average user often works with more than one security
product. Depending on the quality of the products used,
problems with false positive issues can occur, when not all
components of a threat are removed. Just imagine a product
that correctly detects and disables a threat, but leaves behind a
few traces in the registry and some non malicious files. A
second security product might detect these traces and inform
the user about an infection, which he thought had already been
fixed by the first product. In the end, the user is left in a state
of uncertainty, not knowing whether the first product failed or
the second product is giving a false positive or both, or neither.
With the increasing distribution of rogue anti-spyware products,
this problem seems likely to become even more relevant,
because these programs are always looking for something to
detect and thus justify their existence, as Schouwenberg pointed
out in 2006 [2]. Right now, most of their detections clearly are
false positives, but some day they might happily detect all the
stuff which is left over from real anti-malware products.

Another point to think about is that malware removal always
requires some kind of analysis beforehand. This is, of course,
necessary to know what the malware really does on the system
but also to avoid false positives, both in detection and removal.
So, when a comprehensive analysis is available, why not use
that information and perform a full removal? On the other
hand, a complete removal indicates a good analysis and the
following question arises: when not all traces of a malware are
removed, does that mean the anti-malware software vendor
performed an improper analysis and just missed that stuff?
And who knows what else has been missed?

In the end it all comes down to the first point again. The user
expects full removal of all malware components because he
wants a secure and fully working system and he wants to be
sure about the state his system is in. Hence software is needed
which can be trusted and which can be used as a reference
when asking about the security of a system.

We’ll assume everyone has an understanding of why we think
malware removal should be performed to the fullest extent. On
this premise, we will take a look in the following sections at
the current approach, point out problems and compare it to
some more generic approaches, which might help in solving
those problems.

CONTENT AND CONTEXT SCANNING AND
ITS LIMITATIONS
Malware removal is based on two main approaches, content

MALWARE REMOVAL – BEYOND CONTENT AND CONTEXT SCANNING MORGENSTERN & BROSCH

212 VIRUS BULLETIN CONFERENCE SEPTEMBER 2007

and context scanning. The first one originates from anti-virus
products, while the second one used to mainly be used in
anti-spyware products. Due to the increasing complexity of
multi-component malware threats, a combination of both
approaches is usually used to remove threats these days. The
procedure is simple and only needs a few words of
explanation.

Content scanning identifies malicious files with the help of
signatures. This works very well on all the primary
components which are the actual executable malware files,
but is not the first choice when dealing with secondary
components such as log or graphics files created by the
malware. Additionally, registry entries will not usually be
detected via signature scanning either. At this point, context
scanning comes into play. When a piece of malware has been
identified with content scanning, all the other related
components can be detected and removed via simple context
rules, which link certain files and registry keys to an identified
malicious program [1, p.62].

Of course, these techniques are not free from problems, most
of which have been explained in Bruce’s paper. These include
random filenames, rootkit and anti-removal techniques.
Shared components as well as pre-infection settings are
additional issues that have to be considered when removing
malware and restoring a system. Most of the problems can be
fixed easily; in the case of random filenames, for example, an
additional content scan can be performed, anti-rootkit
techniques can be used to remove rootkits and so on.

The most severe problem, however, is response time.
Introduced by Andreas Marx at the 2004 Virus Bulletin
Conference [3] the term describes how long it takes for
anti-malware vendors to respond to a new threat. Usually it
refers to the time frame between the occurrence of a threat
and the release of a signature update which detects that threat.
In order to create a signature for detection it is only necessary
to decide whether a file is malicious or not, which in most
cases shouldn’t be too hard. Yet response times vary from
only one to two hours, to up to several days for different
vendors and different threats.

To take this a step further we checked when the dropped files
of a sample are detected by an anti-virus product. This could
be an indicator of how long it takes until a (final) removal
routine becomes available. To get a better insight into the time
frame we are talking about, take a look at Figure 1.
Corresponding results and conclusions will be presented in
the next section.

Before presenting our test results yet another point must be
made. The behaviour of modern malware can be affected by

many different factors. For example, the origin of the system
used for analysis, the date, or the presence of any installed
programs. Additionally, when malware loads files from the
Internet, these files may change over time, therefore requiring
a new analysis. Even when an initial analysis and removal
routine is available, there is no guarantee that it is complete
and up to date; in this case Figure 1 would become a lot more
complicated and the time frame in which the user is unsafe, or
at least unsure, might become a lot bigger.

Two main issues can be concluded. Analysis of the malware is
always necessary to provide detection as well as removal
capabilities. Some malware changes its behaviour, so updates
to removal routines become necessary as well. Both of these
points lead to one big problem: it can take way too long until
a satisfying removal routine is available to the user.

Test results

In order to support the assumptions made above, some actual
test results will be discussed in this section. First, we will
look at the results we’ve just announced above: statements on
the time frame between the detection of a sample and the
detection of the dropped files. The second type will include
some actual removal results gained from desktop products.
Several conclusions will be drawn, that lead to the next
sections which will examine different approaches and how
they might help close the gap between the occurrence of a
new piece of malware and the successful removal of it from
a system.

Removal of malware is only necessary when no protection for
it was in place before the malware hit the customer’s system.
Hence, a look at outbreak response times and proactive
detection is needed to gain an overview of how relevant the
problem of malware removal actually is.

Table 1 presents the average response times of the given
products over the last six months. Proactive detection rates are
also given. These refer to different test sets and to different
ages of the signature updates, ranging from one to three
months old. The test sets used here contain worms and
backdoors taken from our zoo collection. Although the
proactive detection results have been gained in several
different tests using different test sets, they still illustrate the
general problem.

What can clearly be seen is that all vendors take some time to
react to a new threat. It is not possible to determine when a
piece of malware first appeared ‘in the wild’, hence it is very
likely that the real response times are even higher. This is also
supported by the fact that no vendor can have a zero-second
access to a new threat. It has to appear somewhere, before
vendors can take care of it. Finally, having an update ready
doesn’t mean that users will download and install it right
away. In the end, there will be a time frame of many hours,
sometimes even days, in which a new malware threat can’t be
detected with a dedicated signature.

At this point, proactive or generic detection would be a
solution. However, as the detection rates given in Table 1
suggest, most products wouldn’t even catch half of the new
malware proactively. Furthermore, proactive detection isn’t
always available from the start to protect a user’s system.
Instead it is constantly updated by the vendor, because new
malware techniques and families are discovered. Therefore it
might be able to detect a malware proactively sooner or later.

Figure 1: Time frames between detection and removal
routines.

MALWARE REMOVAL – BEYOND CONTENT AND CONTEXT SCANNING MORGENSTERN & BROSCH

213VIRUS BULLETIN CONFERENCE SEPTEMBER 2007

There is actually a chance that a customer’s system will get
infected, because on the one hand it takes time to create and
distribute signatures and on the other hand proactive detection
is not very often able to stop new unknown threats. Then
again, this is something which shouldn’t be a big surprise
when looking at real-life scenarios.

Panda Software, for example, publishes some interesting
statistics on its website www.infectedornot.com. About half of
the PCs scanned with the company’s online scanning service
were found to be infected, with not much difference whether
anti-virus software was installed or not. The site also provides
statistics on the distribution of different malware types found.
Adware, hacking tools and trojans are the top three with each
accounting for more than 25%.

Clearly, disinfection and malware removal routines are
necessary. But how well do they work and how quickly are
they available? Two different tests have been carried out to
answer these questions. The first one determines the time
frame between the detection of the original malware via
signature and the detection of the dropped components with
additional signatures. The second test presents actual removal
rates of different types of malware. These results can be used
to conclude how well anti-virus products are able to clean a
system after it has been infected by malware.

Figures 2 and 3 are two small extracts of figures showing the
response times for dropped components compared to the
detection date of the original dropping component. Figure 2
refers to samples which were added to the WildList in
February 2007 while Figure 3 refers to adware and spyware
samples that appeared throughout 2006 and at the beginning
of 2007.

The columns refer to different products used in the test, which
are the same as those listed above, but in no specific order.
The rows refer to the dropped files that have been considered.
Please note, the detection of dropped components differs
between different products, hence neighbouring cells don’t
necessarily refer to the same dropped component. Again, it is
not the results of single products that are of interest, but rather
the overall picture that should be looked at.

Three different kinds of grey tone have been used. The
lightest one refers to dropped samples that have been detected
the same day or even before the dropping sample has been
detected. The middle tone refers to samples that have been
detected in a time frame of one to seven days after the
dropping sample has been detected. Finally, the darkest tone
shows all the dropped files which have only been detected
after a week or even longer.

The WildList table looks a lot like it should. Most products
captured all the dropped files on the same day the original
samples were detected, or even before. Only on very rare
occasions did it take some vendors more than a day to add
detection, usually just one to seven days. The same result has
been seen in more tests using the additions to the January
2007 and March 2007 WildLists as test samples.

Vendor/Product Average response Proactive detection
time range, incl. (based on different
proactive detections tests)

Avira AntiVir 2 to 4 hours 20 to 50%

Alwil Avast 6 to 8 hours 5 to 35%

Grisoft AVG 6 to 8 hours 5 to 35%

BitDefender 2 to 4 hours 25 to 60%

F-Secure < 2 hours 20 to 50%

Kaspersky < 2 hours 20 to 50%

McAfee 14 to 16 hours 25 to 45%

Microsoft 38 to 40 hours 5 to 15%

Eset Nod32 4 to 6 hours 30 to 70%

Panda 4 to 6 hours 20 to 50%

Symantec Norton 6 to 8 hours 15 to 50%

Trend Micro 6 to 8 hours 15 to 45%

Table 1: Response times and proactive detection rates, based
on tests by AV-Test.org, published in [8, 9].

Figure 2: Example detections of dropped files, WildList
02/2007 samples.

Figure 3: Example detections of dropped files, adware and
spyware samples.

Dropped component detected the same day or before the dropping file.

Dropped component detected one to seven days after the dropping file.

Dropped component detected more than seven days after the dropping
file.

MALWARE REMOVAL – BEYOND CONTENT AND CONTEXT SCANNING MORGENSTERN & BROSCH

214 VIRUS BULLETIN CONFERENCE SEPTEMBER 2007

However, when looking at the adware and spyware results the
products’ performance was a lot worse. Every product had
trouble to some extent in detecting dropped components in a
timely manner. Actually, most of the initially missed
components were detected at least seven days after the
detection of the original dropping sample. There is no easy
conclusion to draw from these results. The products
obviously do fine on WildList malware in these tests. But
why is that so?

One possible explanation is the sheer volume of malware
these days. There are so many samples to process, that
different priorities are necessary. WildList samples will get
the highest priority because this is malware that is known to
be a real and dangerous threat. Also, since most of the
products reviewed are still mainly anti-virus software with
added anti-spyware capabilities, they focus on their original
main purpose of removing viruses, worms, etc. rather than
adware and spyware.

Another explanation of the results could be due to the
complexity of the different threats. Conventional malware, as
found on the WildList, usually performs fewer system
changes than adware and spyware which often create several
hundred registry keys and files. Hence it is easier to provide a
full analysis of WildList malware with regard to system
changes. There are of course exceptions, such as malware
which uses rootkits or other similar techniques which
complicate the analysis.

Finally, since adware and spyware often consist of many files
which are not malicious per se, context scanning may be used
instead of content scanning to identify and remove these. So
the dropped files don’t necessarily have to be identified with a
signature. However, we only considered files that were
detected by the software sooner or later, which conflicts with
this assumption.

Some actual removal results of tests with desktop products
might shed some more light on the whole story. Different
WildList malware as well as adware and spyware was used to
infect a clean Windows XP SP2 system. The changes made by
the malware were recorded and the state of the infected
system was saved, so it could always be restored for testing
again. This was repeated for all the malware samples in the
test. In the next step, the anti-malware products were used to
disinfect the system of the respective malware and the
changes made to the system by the anti-malware software
were noted. The products used in these tests include those
mentioned in the tables above. The results were not really
surprising considering what we have written above.

System disinfection of WildList malware worked relatively
well. The removal of malicious files proved no problem for
any of the tested products. However, non malicious files such
as log or configuration files were often left on the hard disk.
Additionally, changes to the hosts file were either ignored or
were only partly fixed by most of the products. The picture
doesn’t look too bright where the registry is concerned, either.
Despite the fact that all products were able to deal with the
registry in some way, a lot of simple mistakes were made.
Even Run and RunServices keys were overlooked by several
products. In the end, no product was able to perform a 100%
system disinfection of WildList malware. But it must be noted
that all products successfully disabled nearly all malware
samples in this test, with only very few exceptions, where the
malware stopped the scan process or the scanner as a whole.

When looking at adware and spyware the results were a lot
worse. The tested products can be divided into two classes:
those that try to remove adware and spyware and those that
don’t seem to put much effort into that task. Let’s start with
the latter. While these products try to deal with all infections
they detect, they only remove a very small fraction of the total
number of changes. For example there were several products
that were not able to remove more than 25% of the created
files. If you think this sounds bad, just wait for the registry
removal results. Out of 3,500 registry keys created by 50
different adware and spyware samples, several products
couldn’t remove more than 60 keys and some didn’t even
remove 10. As an example, refer to Table 2 below. The adware
shown here is ‘Hotbar’, which creates quite a lot of files and
registry keys on a system. Removal results of four different
products have been included. Names of the products are not
given, since this example doesn’t necessarily reflect their
overall performance.

Files created Registry keys created

AdWare.Hotbar 183 789

Files removed Registry keys removed

Product A 16 0

Product B 25 0

Product C 26 43

Product D 182 778

Table 2: Removal results of ‘AdWare.Hotbar’.

The first three products don’t give the impression they were
all too serious about removing the threat. However, as you can
see, there are products that are able to perform a (nearly)
complete removal of such threats. This brings us to the other
type of products which are actually doing pretty well at
removing adware and spyware. They reach about
60–80% in file removal and about the same rates in removing
registry keys on average over all samples. Another conclusion
is that those products either do a very good job on adware and
spyware, or they nearly completely fail to remove it. That
way, an important difference from WildList malware removal
has to be noted. While all products could disable nearly all of
the WildList malware threats, this is certainly not the case for
adware and spyware. The main installation files and some
components may be removed, but many other components
remain which stay active on the system. Only when nearly all
components of the malware were removed was it truly
disabled and no longer able to do any more harm.

The results of this section seem to support the findings of the
earlier sections. WildList malware was again handled very
well by all products. These samples are clearly given priority.
However, some shortcomings were already obvious in the
case of registry cleaning. Adware and spyware removal
showed very different behaviour for the different products.
There were some that failed on nearly all samples while on
the other hand there were products that did pretty well on
nearly all samples. However, no product reached as good a
rate as in the case of WildList malware removal. This may
again point to the issue of higher complexity in the case of
adware and spyware. It also seems that some samples were
not yet fully processed at the time of our tests and only
detection for the original sample and maybe some of the

MALWARE REMOVAL – BEYOND CONTENT AND CONTEXT SCANNING MORGENSTERN & BROSCH

215VIRUS BULLETIN CONFERENCE SEPTEMBER 2007

related files was in place. Even the better products have a hard
time keeping track of all the new malware sometimes.

GENERIC APPROACHES NEEDED

As described in the previous section, vendors sometimes react
pretty quickly to new threats and sometimes they take many
hours or even days. But often just the original samples and
maybe a few dropped files are detected. A full disinfection
routine that can clean all those files and registry keys may still
be missing. Only after a couple of days, when the malware
has been completely analysed, can the user take advantage of
the better disinfection routine. But even then not all malware
components can always be removed, for several reasons as
described above. To close the gap from detection to complete
removal of the malware, generic disinfection routines which
work directly on the infected system could be a solution.

When looking back through anti-virus history, there has been
a similar situation before, not with system disinfection but
with file disinfection. Since the number of malware outbreaks
rose very quickly, it was ceased to be possible to create file
disinfection routines for every single item of malware. Instead
of analysing the whole infection routine, generic file
disinfection strategies were developed [4, p.474]. In most
cases the virus reverts the infected file to a clean state after it
has started, so generic approaches emulated the execution of
the infected file and let the virus do the disinfection work.
Applying this technique to system disinfection is not really
possible, since the malware won’t revert its changes to the
system. But it’s possible to monitor it and learn what happens
during the infection phase. The idea examined here is to
emulate the system infection process in a sandbox and report
all system changes the malware makes and then revert all of
them to clean the whole system.

Sandbox-based disinfection

Before we continue it is necessary to get some insight into
exactly what we mean by sandboxes. We all know sandboxes
from our childhood. They were a place where we could do
what we wanted without damaging anything, just play around.
A computer sandbox is exactly the same. It is a separated area
of the computer where applications can run without changing
anything on the original system. Or more precisely: a sandbox
is a virtual environment where executable files can be test-
driven to analyse their behaviour.

The malware runs in a virtual subsystem of the actual
operating system. In this cage it has read access to all files
and even the registry. Also the storage device, the IO manager,
the ROM, the RAM and the user are emulated [4, p.490; 5]
When the sample attempts to modify files or registry keys,
virtual copies are created to which the malware has read-write
access. Furthermore it is possible to detect whether the
malware wants to re-flash the BIOS or tries to hide
information. After the program terminates a report is
produced of the activity of the malware, which could then be
used for disinfection.

So the simple disinfection routine would follow these steps:

1. During the first step a signature-based full system scan
would be performed. All files found in this step would be
added to a list of malicious files. In this step only some
files (and maybe registry keys) would be found where
signatures were available.

2. In the next step every file from the list of malicious files
would be analysed within a sandbox. During this step
you would get even more files and registry keys that were
created during the system infection.

3. Next, all active components of the malware would be
deactivated. This includes terminating malicious
processes as well as unloading drivers that come with the
malware.

4. In the last step all found files and registry keys would be
deleted (if necessary after a reboot). Infected files would
be disinfected using generic disinfection routines and
system changes made by the malware would be reverted
to a default state.

Test results and further concepts

In our test we analysed each malware sample twice. In the
first step we ran the file on a real system to find out which
system changes were made by the malware. In the second
step we used a sandbox analysis and then we compared
both results.

During our test we saw that with the simple sandbox approach
only a few files and registry keys were found. The spyware
‘Admedia’, for example, creates 48 files and 178 registry keys
and values, but only 24 files and six keys were found by the
sandbox. One reason for this poor performance is that one
sample does not perform a complete infection process. During
the infection other files were dropped and executed to
complete the system infection, so our infection analysis has to
cope with that.

An improvement on the simple approach is to analyse all
dropped components inside the sandbox as well. Additional
files that were found during this step were added to the list of
malicious files. The analysis process stops when an analysis
has been performed for all files on this list. This is followed
with steps three and four.

Better results can be achieved with this approach because files
and registry keys can be found that were created during a
multi-stage infection process. In the case of ‘Admedia’ the
detection of files was raised from 24 to 32 and four more
registry entries were found too. But these results are not
sufficient anyway. The reasons for this will be discussed in
the next section.

Figure 4: Sandbox-based information retrieval.

MALWARE REMOVAL – BEYOND CONTENT AND CONTEXT SCANNING MORGENSTERN & BROSCH

216 VIRUS BULLETIN CONFERENCE SEPTEMBER 2007

Limitations of the approach
There are two classes of problem that arise when performing
automated sandbox disinfection. On the one hand there are
problems which are closely related to the sandbox so these
are the same for all malware samples. Other problems relate
to certain malware samples only.

Some sandboxes only emulate the well-documented Windows
API that can be seen as an abstraction of the native API and is
not intended to be called in user applications. But virus
writers might use the native API calls to confuse the sandbox.
So if the sandbox is not able to emulate this API, the sandbox
will not be able to emulate the infection process correctly.

Additionally, malware could try to detect virtual
environments and behave differently from how they would on
a real system. Therefore they could test unimplemented APIs
or services or use other tricks like the Red Pill test presented
by Joanna Rutkowska [6].

The second class of problems consists of problems that are
related to certain malware so they cannot be solved in general.
Some spyware installers require user action to complete the
installation process, but in a sandbox only random user
actions can be simulated so far. This makes it hard to analyse
such installers automatically. Files downloaded from the
Internet during the installation process are a problem too.
Fileservers can be down or send different files from time to
time so you cannot guarantee that you get the same files while
analysing the malware as during the initial infection.
Sometimes infections are scheduled and not performed right
away when executing the sample. These scheduled tasks have
to be detected by the sandbox and triggered automatically.

Additionally, it is possible that the malware checks whether
the system is already infected or not before doing anything.
As described before, in a sandbox the malware has a
read-only view of the whole system so it can detect that no
infection is needed and can terminate without doing anything.
To solve this problem you could emulate a default operating
system but then infections that relate to user-specific
applications cannot be found. So you would have to emulate
the system before the infection. But this is what we actually
want to get as a result of disinfection and is therefore
impossible to do.

Random filenames are also a problem when no signatures for
these files are available, because these files will be named
differently during the analysis than they will during the
infection. In addition, pre-infection settings are hard to recover
since the sandbox cannot determine the pre-infection state. For
example, security settings of the web browser or other settings
can only be reverted to if they were saved before the infection.
Otherwise you have to revert them to the default values.

Not cleaning the infected system correctly is one problem but
it is even worse when the disinfection routine triggers an
infection process on a clean system. This can be the case
when the malware breaks out of the sandbox during the
emulation. It is hard to guarantee that there are no security
holes in the sandbox. This way malware could exploit the
sandbox and break out. More descriptions of such problems
can be found in ‘Insecurity in Security Software’ [7].

Other approaches
Clearly sandbox-based disinfection has a lot of weak points as
the test results and further limitations showed. It is pretty

clear that at the moment a sandbox-based disinfection can’t
replace really good removal routines based on a proper
analysis performed by the vendor. However, they are a
valuable contribution to disinfection techniques and help with
closing some gaps which have been pointed out above. The
same is true for other approaches, which can assist either
current approaches or the sandbox-based approach. We will
look briefly into one that supports the latter.

This will basically be some kind of system supervising, which
logs all the system changes caused by certain programs and
also stores the old settings. This information can then be used
to restore a clean system state, when that program is known to
be malicious, if for example signature-based detection is in
place. Similar functionality already exists in current security
software. However, the software either completely locks down
the system and forbids certain system changes or asks the
user what to do, sometimes bugging him with message after
message when installing legitimate software. Eventually, the
user gets used to clicking ‘Yes’ and allowing all the system
changes the software asks for, maybe even when it’s malware.
In contrast, the approach discussed here will log changes, but
neither ask the user nor prevent any of these changes. Only
when it is certain that the program which performed these
changes is malicious, will this information be used for the
removal process.

There are of course several problems that have to be dealt
with here. The first question is which programs should be
supervised? Monitoring each and every piece of software on
the system won’t work out well for performance reasons,
hence some kind of security risk rating needs to be applied.
Most of today’s anti-malware products are able to rate certain
files as suspicious based on heuristics. The same should be
applied here, but in a very loose way to make sure nearly all
potentially malicious files are caught. On the other hand it is
also helpful to have a whitelist containing known clean
programs. Additionally, when a supervised program is still not
identified by a signature after a few months, a ‘time-out’
should trigger and that file can then be removed from the
monitoring list.

So far it is known which files should be supervised initially,
but it is unclear which of the system changes made by these
files can be considered malicious. It is quite possible that
some programs perform both wanted and unwanted changes
to the system and create both clean and malicious
components. The step of removing the malware and
reverting the system changes could be quite challenging
because of this.

With these limitations it is hardly imaginable that this
approach could be used for malware removal without using
any additional methods. But it can solve a few of the
problems which occur with sandbox-based attempts. We
talked about pre-infection settings which couldn’t be restored
either with content and context scanning or with
sandbox-based disinfection. This could now easily be handled
with the information gained in supervising the malware, since
the old settings would have been saved.

Another problem relates to files with random names not
detected by a signature. These wouldn’t be handled correctly
with a sandbox analysis, since the names would most likely
be different in reality. With the supervision approach, this
wouldn’t be a problem, because all the actual changes and
created files would have been recorded. The same is true for

MALWARE REMOVAL – BEYOND CONTENT AND CONTEXT SCANNING MORGENSTERN & BROSCH

217VIRUS BULLETIN CONFERENCE SEPTEMBER 2007

files or registry keys that didn’t show up in a sandbox
analysis, but were created anyhow.

CONCLUSION
It is not hard to rate the current situation with content and
context scanning. It cannot be denied that there are a lot of
weak points, both in detecting and removing malware. PC
systems still get infected a lot because it takes too long until
signature updates reach the users and proactive detection is
still very variable. Therefore, the problem of malware removal
arises. While for some malware categories, many vendors
provide removal routines pretty quickly, there are other
categories which have to wait a lot longer. Additionally, no
generic routines are in place for proactively detected malware.
So, even when a piece of malware is detected on a system,
there is no guarantee that all related components can or will
be removed.

Generic routines that work directly on the user’s system
would be a solution to that problem. We examined an
approach that works on a sandbox-based analysis. While in
theory this sounds like a very good idea, real tests proved to
be disappointing. The naïve procedure, which only
considered one layer of sandbox results, didn’t yield any
noteworthy results. Only when more layers were reviewed
could some meaningful information be gained for removal of
the malware. Compared to the current procedures this
approach cannot act as a replacement, but rather as a
complementary procedure.

Similar statements can be made about the supervision
concept. While it is not able to solve all problems on its own,
it can be a good addition to other methods. When used in
conjunction with the sandbox-based approach some of the
issues described above can easily be solved.

And this is the main thought that can be taken from this paper.
A combination of several approaches, each solving issues of
the others, is probably the best way to go. It remains the case
that nothing can beat a proper analysis performed by anti-
malware vendors. However, it takes time until they are
available and they might become outdated when malware
changes its behaviour. Generic approaches such as
sandbox-based methods can solve these two problems. But
the problem of randomly named files and pre-infection
settings is still open. This is where the supervision method
can help and take care of these issues.

REFERENCES
[1] Bruce, J. The challenge of detecting and removing

installed threats. Proceedings of the 16th Virus
Bulletin International Conference. 2006.

[2] Schouwenberg, R. The (correct) detection of light
grey software. Proceedings of the 16th Virus Bulletin
International Conference. 2006.

[3] Marx, A. Anti-virus outbreak response testing and
impact. Proceedings of the 14th Virus Bulletin
International Conference. 2004.

[4] Ször, P. The Art of Computer Virus Research and
Defense. Addison Wesley. 2005.

[5] Natvig, K. Sandbox technology inside AV scanners.
Proceedings of the 11th Virus Bulletin International
Conference. 2001.

[6] Rutkowska, J. Red Pill... or how to detect VMM
using (almost) one CPU instruction.
http://invisiblethings.org/papers/redpill.html. 2004.

[7] Morgenstern, M.; Marx, A. Insecurity in security
software. Proceedings of the 15th Virus Bulletin
International Conference. 2005.

[8] Knop, D. Die Leibwächter - 17 Virenscanner für
Windows XP und Vista. c’t 5/2007, pp.142–153.

[9] Larkin, E. Top antivirus performers. PC World, April
2007. http://www.pcworld.com/article/id,130869/
article.html.

