
INSECURITY IN SECURITY SOFTWARE MORGENSTERN ET AL.

212 VIRUS BULLETIN CONFERENCE OCTOBER 2005 ©2005 Virus Bulletin Ltd. No part of this reprint may be
reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

INSECURITY IN SECURITY
SOFTWARE
Maik Morgenstern

AV-Test GmbH, Klewitzstr. 7, 39112 Magdeburg,
Germany

Tel +49 391 6075464 • Email
mmorgen@av-test.de

Contributors:

Andreas Marx
AV-Test GmbH, Klewitzstr. 7, 39112 Magdeburg,

Germany
Tel +49 391 6075466 • Email amarx@av-test.de

Mary Landesman
Antivirus.About.com, About, Inc., 249 West 17th

Street, New York, NY 10011, USA
Email antivirus.guide@about.com

ABSTRACT

Data security software and, in particular, AV programs are
deployed widely throughout companies, organizations, and
private homes. Without this protection, users are at high risk of
malware infection. But what happens when the protective
software becomes the vector for compromise? In the first part
of 2005, several security vulnerabilities – especially buffer
overflows – were discovered in a wide range of security
products. Both open source software such as ClamAV and
commercial tools from Symantec, F-Secure, Trend Micro and
Computer Associates have been affected. In this paper, we
discuss the additional risk of infection caused by these
vulnerabilities in AV and other security software, including
how this risk can be reduced by the developers and by the
users of the products.

1. A BRIEF INTRODUCTION

As mentioned in the abstract, this paper will deal with security
software and the security vulnerabilities that may be found in
them. Therefore, it is necessary to define what we mean by
these terms. These should not be taken as general definitions,
but rather as working definitions for use in this paper.

First we will define briefly our views on security software,
then on security in general and, finally, we will take a brief
look at the term ‘security vulnerability’. However, we will not
go into the details of security models or the basics of software
engineering that will be needed to understand some of the
reasons for security vulnerabilities presented later. We assume
a very general knowledge of these issues.

1.1. Security software

Security software products can be divided into two groups. On
the one hand, there are applications meant for the home and
business user and, on the other hand, the tools used by
researchers in the field of computer security. The first category
contains products such as firewalls, IPsec products, network
intrusion prevention/detection software, as well as
cryptography applications and last but not least anti-virus (AV)

software. The second category refers to tools like IDA Pro,
OllyDbg and Softice or more generally debuggers,
disassemblers, hex editors and the like.

This is by no means an exhaustive list and probably more or
different categories could be included. But that will not be
necessary since we are focusing on exactly these two kinds of
security software, especially anti-virus, in the present paper.
The reasons for this will be presented in section 2.

1.2. Security

At least a short introduction to the terms of security is needed,
especially since some of the issues involved are very useful in
the following parts of the paper.

‘Security is about well-being (integrity) and about
protecting property or interests from intrusions, stealing or
wire-tapping (privacy – the right to keep a secret can also
be stolen). In order to do that, in a hostile environment, we
need to restrict access to our assets. To grant access to a
few, we need to know whom we can trust and we need to
verify the credentials (authenticate) of those we allow to
come near us.’ [1]

Security is based on the following independent issues:

• Privacy

• Trust

• Authenticity

• Integrity

Environments can be hostile because of:

• Physical threats

• Human threats

• Software threats – this is what we’ll look at.

What are we afraid of?

• Losing the ability to use the system.

• Losing important data or files

• Losing face/reputation

• Losing money

• Spreading private information about people [1].

As one can recognize, most of those points will get your
attention immediately, since they somehow seem to focus on
the problems and issues we get with security holes in security
software. But note: these are general thoughts about security in
the computer field.

I want to close the definition with yet another quote, which
introduces a problem we will be facing more often throughout
the paper:

‘Security is a social problem, because it has no meaning
until a person defines what it means to them’ [1].

1.3. Security vulnerability
It’s pretty difficult to define the term ‘security vulnerability’ in
the context of security software, since every simple bug or
design error could possibly lead to a security issue without
actually fitting into a common definition. Also, not everyone
has the same idea of security, as stated above. Therefore we
will first explain ‘security vulnerability’ in a general sense and
later mention what additional problems might occur with
security software.

INSECURITY IN SECURITY SOFTWARE MORGENSTERN ET AL.

213VIRUS BULLETIN CONFERENCE OCTOBER 2005 ©2005 Virus Bulletin Ltd. No part of this reprint may be
reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

On wikipedia.org the term ‘security vulnerability’ is
explained as follows:

‘In computer software, a security vulnerability is a software
bug that can be used deliberately to violate security’ [2].

However, security vulnerabilities don’t always depend on
bugs. Simple misconfigurations/usage or even errors in design
could lead to security flaws as well. Therefore, a more
sophisticated definition is needed. The following can be found
in Introduction to Computer Security by Matt Bishop [3]:

‘When someone breaks into a computer system, that
person takes advantage of lapses in procedures,
technology, or management (or some combination of these
factors), allowing unauthorized access or actions. The
specific failure of the controls is called a vulnerability or
security flaw; using that failure to violate the site security
policy is called exploiting the vulnerability.’ [3]

This is quite a sufficient definition. However, it still leaves
some room for interpretation. Think of security software that
releases a flawed update, rendering the systems the software
is installed upon inoperable. One must either remove the
security software or shut down the system. The first option
has an impact on security, the second on business. Other
problems that lead to denial of service or just bypassing
viruses in a scan need to be considered when talking about
security flaws. That’s why we’ll use a somewhat fuzzy idea of
‘security vulnerability’ throughout the paper.

2. WHY ARE WE LOOKING AT IT?

Now that we know what we are looking at, it’s to time to
understand why we are looking at it. First, there is a general
reason. More and more security vulnerabilities are being
found and, more importantly, exploited in today’s software.
That’s why security holes are still an up-to-date topic.
According to the Yankee Group, 77 vulnerabilities in security
products were disclosed from 2004 to May 2005 [4].

Of course this is a problem for the software industry in
general and doesn’t affect security software alone. Why
would we want to focus on security software? There are two
main points that must be reviewed. The rate of incidents
found in security software has increased a lot in the past
months, even more than for Microsoft. Secondly, and in
conjunction with the aforementioned aspect, security products
such as anti-virus software are very wide deployed throughout
homes and businesses and therefore are a nice target for
vulnerabilities and exploits – not just hackers but also
competitors or at least security analysts.

Let’s look at these two facts and reasons in a bit more detail.
Yankee Group again gives a nice review on these points.
Microsoft Windows has long been the number 1 target of
vulnerability hunting (see Figure 1), but with its increased
security efforts, the number of vulnerabilities found is
decreasing and new targets are needed. And it seems that
security software is a nice target for that purpose, because
basically every business and home user has some security
software installed. Another article confirms this: the SANS
Top 20 Internet Security Vulnerabilities list currently contains
well-known security vendor names like Symantec, Trend
Micro, McAfee and F-Secure [5].

Additionally, there isn’t much public awareness, or even
pressure, regarding security holes in security software. As

such, vendors aren’t really forced to react and fix or even
redesign their software immediately – unlike Microsoft
which is forced to do so, since it receives a lot of criticism
when it doesn’t.

What happens when vulnerabilities are found and exploited
was shown in early 2004 with the Witty worm, made possible
solely through a bug in security software by ISS. ISS did,
however, react swiftly and the number of vulnerabilities found
in its software has been reduced since then. Other vendors
don’t seem to have reacted just yet, thus inviting ‘black hat’ as
well as ‘white hat’ hackers to exploit or find holes in their
software. While the black hat side has always been a big part
of the game, the white hat side will play an increasing role in
the future. Security vendors, or at least security analysts,
might check competitive products for vulnerabilities and
release advisories, thus giving them bad publicity.

This leaves us with a paradox: security software is meant to
secure the system, but nowadays it introduces new security
holes. This is likely to impact on the vendors’ sales figures
sooner or later, since users will likely prefer a more secure
system – one that works correctly (at least most of the time)
and doesn’t introduce new security holes or put the user at risk.

It becomes even more obvious when we remember some of
the terms involved with security. People have certain
expectations of software as well as security. Microsoft’s

Figure 1 (source: [4]).

INSECURITY IN SECURITY SOFTWARE MORGENSTERN ET AL.

214 VIRUS BULLETIN CONFERENCE OCTOBER 2005 ©2005 Virus Bulletin Ltd. No part of this reprint may be
reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

trustworthy computing paper of gives a good overview.
Without going into detail we can sum it up as follows: your
users need to trust your software to consider it to help secure
their system; and the other way around, your software needs
to be secure (and not just that, but that’s the point we are
reviewing here) to be trusted by the user [6].

Now it’s time to present some examples that show some of
the current dangers clearly. This will lay the foundation to
look at some of the causes for these errors and vulnerabilities,
which will lead to the insight: it’s time to act! We will then try
to give some hints for both the vendors and users on how to
act and react to the current situation.

3. EXAMPLES AND THEIR EFFECTS
Now after all the theory it’s time for some examples, since
nothing gives a better view of a problem than a real-life
experience. It is also necessary to understand the spectrum of
security flaws and their reasons.

Just as we had problems defining the term security
vulnerability, we will have problems with classifying these
examples. When looking at them, one could come up with
these classes:

• A bug that leads to a classic security vulnerability like a
buffer overflow, which could be used to execute arbitrary
code.

• Something other than a bug, but still leading to a security
vulnerability or a bug that leads to unwanted behaviour,
but which isn’t necessarily considered a security
vulnerability.

Examples of both categories will be looked at, though more
of the first one will be reviewed than the second. We will try
to look at the bug or, more generally, the cause and the
resulting security vulnerability/flaw and possible effects.

3.1. Bug leading to a security vulnerability

This is the class we are addressing with this paper. Why
would we want to take a particular look at this? Because
these are the kinds of error that have made the news in recent
years in different kinds of applications and have now become
a real threat for security software. They usually open up the
gates for malicious exploits and therefore it is crucial to check
them out.

Buffer or heap overflows are the main part of this class, which
may enable the execution of arbitrary and most likely
malicious code or the performing a denial of service.
Consequently, the examples presented here refer mainly to
those bugs. We won’t give a technical introduction to the
terms used here, since we assume some general knowledge,
and it isn’t that important anyway, since we want to focus on
the possible effects and not on the causes in this section.

ISS and the Witty worm [7]
Discovery date: March 8, 2004
Discovered by: eEye Digital Security

Several ISS products – firewalls and the like – contained a bug
in the parsing of ICQ packets, which led to a stack-based
overflow. It was possible to exploit this error and execute
arbitrary code. This was then used by the Witty worm, which
propagated via UDP packets using this vulnerability. The
worm had a destructive payload which attempted to overwrite

hard disk sectors. To sum it up, a security product opened up
the gates for a worm.

The most interesting point about this incident, however, is that
the vulnerability was found by a competitor of ISS, namely
eEye Digital Security. According to them, it took ISS about 10
days to react and patch the vulnerability. The patch had been
released one day before the worm was released. However, the
worm still made a big impact and ISS received quite a lot of
unwanted attention from the media.

Trend Micro VSAPI ARJ parsing [8]
Discovery date: February 23, 2005
Discovered by: ISS

An error in the ARJ file format parser when dealing with very
long filenames led to a heap overflow, which in turn could be
exploited to execute arbitrary code. This affected virtually
every product that uses the VSAPI scan engine. An update of
the VSAPI engine fixed the problem. A similar problem has
been identified in F-Secure products [9].

McAfee virus library [10]
Discovery date: March 17, 2005
Discovered by: ISS

An error in the McAfee virus library when parsing LHA files
led to a buffer overflow allowing the execution of arbitrary
code. This could have been exploited by an email containing a
crafted LHA file that targets this error. An update of the scan
engine or recent virus definitions fixed the error.

Symantec multiple products UPX parsing
engine heap overflow [11]
Discovery date: February 8, 2005
Discovered by: ISS

An error in the UPX parsing of the Symantec AntiVirus library
could lead to a heap overflow, which can be used to execute
arbitrary code by a remote attacker. Heuristic detection for a
potential exploit using this flaw has been created and updates
have been released.

Alwil Software Avast antivirus device driver
memory overwrite vulnerability [12]
Discovery date: N/A
Discovered by: Piotr Bania

An error in the device driver could lead to a buffer overflow
allowing the execution of arbitrary code or denial of service.
This has been fixed by an update of the software.

Computer Associates Vet antivirus library
remote heap overflow [13]
Discovery date: May 22, 2005
Discovered by: rem0te.com

An error in the CA Vet antivirus library could lead to a heap
overflow when analysing OLE streams. This can be exploited
to execute arbitrary code. The problem has been fixed with an
updated engine version.

Kaspersky AntiVirus ‘klif.sys’ privilege
escalation vulnerability [14]
Discovery date: June 7, 2005
Discovered by: Softsphere

It is possible to exploit a vulnerability under Windows 2000

INSECURITY IN SECURITY SOFTWARE MORGENSTERN ET AL.

215VIRUS BULLETIN CONFERENCE OCTOBER 2005 ©2005 Virus Bulletin Ltd. No part of this reprint may be
reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

that allows execution of arbitrary code with high level
privileges. An updated program version fixes the problem.

DataRescue Interactive Disassembler Pro
buffer overflow vulnerability [15]
Discovery date: January 24, 2005
Discovered by: iDefense

When parsing the import directory of a PE file a buffer
overflow could occur. This can be exploited to execute
arbitrary code. An initial fix has been provided and a new
version, released some time later, has fixed this error.

Compuware Softice (DbgMsg driver) local
denial of service [16]
Discovery date: unknown
Discovered by: Piotr Bania

When working with debug messages an invalid pointer could
be used to crash the system. A new version of the software
fixed the problem.

Further examples include:

• Symantec security gateway DNS redirection [17].

• OllyDbg long process module debug vulnerability [18].

• OllyDbg ‘INT3 AT’ format string vulnerability [19].

• PVDasm long name debug vulnerability [20].

• DataRescue IDA Pro dynamic link library format string
vulnerability [21].

• Multiple debuggers security bypass and code execution
vulnerability [22].

• Clam AntiVirus ClamAV MS-Expand file handling DoS
vulnerability [23].

• Clam AntiVirus ClamAV cabinet file handling DoS
vulnerability [24].

These were just some of the examples of vulnerabilities found
in recent months. Some things are apparent. Most of these
vulnerabilities have been found by companies specializing in
security analysis like ISS or iDefense. This leads to the
question: why are those companies able to find these bugs
while the security software vendors are not? Additionally, we
have to assume that ‘black hat’ guys will use similar
techniques and are probably finding and exploiting
vulnerabilities as well. An interesting observation in this
context is that many of these errors led to the execution of
arbitrary code. Also, when an error is found, the chances are
that there are similar errors in this software and even in the
software of other vendors. This makes it easy for the ‘black
hat’ guys to look for new holes to abuse. We hope security
software vendors are following the released advisories and
security alerts to prevent that.

3.2. What else? Or: not quite a bug, still a
security vulnerability or indeed a bug, but not
quite a security vulnerability.

This is the category that makes you think about the definition
of security vulnerability presented in the first section. We will
refer to misconfigurations or design errors that might lead to
security vulnerabilities. We will also look at bugs that lead to
unwanted behaviour, but which are not necessarily considered
security flaws. And, finally, new options used by viruses need

to be considered as well. These are neither bugs nor design
errors or misconfigurations, just something no one came up
with before. As you will see, there are quite a lot of very
different examples for this category as well.

Trend Micro virus sig 594 causes systems to
experience high CPU utilization [25, 26]

An error in Trend Micro’s Official Pattern Release (OPR)
2.594.00 led to slow downs or even 100% CPU utilization,
therefore rendering the computer system inoperable when
running a Trend Micro product.

How does this example fit in our paper? Users had two
choices: turn off the Trend Micro product, which isn’t exactly
secure, or shut down the computer system and wait for an
updated and fixed release, which would mean losses in
business because of a security problem. While a fix was
released shortly after, the problem still affected many, many
computer systems and a lot of people didn’t know what the
problem was, leaving them clueless as to how to fix it. A few
quotes illustrate the impact:

‘This update took down virtually all 1,500 of our Windows
XP SP2 PCs and required many hours of work to resolve.
The machines were rendered inoperable once this
signature hit, and required many of us to work through
Friday night.’

‘How in the world could Trend [Micro] release a signature
file that disables all Windows XP SP2 machines? Why
didn’t [they] test this signature before it got released? I
cannot believe that Trend Micro has no XP SP2 machines
to test on before they release patches, and if they don’t
they better get some ASAP. If this happens again, I can
assure you that we will be finding a new antivirus vendor
for our organization.’ [27]

Windows NTFS alternate data streams [28, 29]

This is a completely different yet important example. A few
months ago this became quite an issue and the public became
aware of the usage of ADS by malicious hackers to hide their
malware on infected computer systems. Some anti-virus
solutions failed to scan ADS back then and didn’t identify
viruses hidden there. No one is to blame, as long as these are
only theoretical threats (but ADS have been a known threat
since 2000 [30]); however, when they are seen in the wild,
vendors need to react.

Archive problems

There have been a number of different problems associated
with the handling of archives in different products. Symantec
had problems scanning manipulated RAR files, which led to a
crash, therefore bypassing the file during a scan [31]. Other
products skipped archives with invalid CRC checksums or
had problems with unfiltered escape sequences in filenames
contained in ZIP archives [32].

BitDefender bug bites GFI

An update in the BitDefender engine had the effect that GFI
mail scanners deleted the body content of every incoming and
outgoing mail, because the engine detected all mails as
infected zip archives. As a consequence, BitDefender now
plans to implement a testing module for integration [33].
That’s something that might have been used before.

INSECURITY IN SECURITY SOFTWARE MORGENSTERN ET AL.

216 VIRUS BULLETIN CONFERENCE OCTOBER 2005 ©2005 Virus Bulletin Ltd. No part of this reprint may be
reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

Further examples include:

• Panda AntiVirus deleting Tobit David communications
software [34].

• Symantec Brightmail AntiSpam static database password
[35].

• McAfee Internet Security Suite 2005 insecure file
permission [36].

• Easy DoS on Kaspersky Anti-Hacker v1.0 [37].

These examples show some other problems of security
software: architecture and design. Security isn’t all about
secure code. Security starts even earlier with the design of
secure concepts and later implementing them. Also, the
integration and composition of different components needs to
be considered when aiming for security. Last, but not least,
updates need to be reliable as well.

4. WHY ARE THERE BUGS AND SECURITY
FLAWS IN SECURITY SOFTWARE, AND
WHY SO MANY?

As mentioned in section 2, we have seen an increasing
number of security vulnerabilities in security software in the
past months, while the number in Microsoft products is
decreasing. But security software is just following an
industry-wide trend, which shows an increasing number of
vulnerabilities (see Figure 1).

Some reasons for the increase in discovery of vulnerabilities
in security software have already been mentioned and won’t
be presented again. This section will focus on the issue of
why the bugs occur. This, of course, is not a problem that is
unique to security software but rather an industry-wide one.
Therefore we will first present some general reasons and then
try to find out what makes security software especially prone
to bugs.

There are several kinds of causes to be reviewed and [38]
sums it up as three main factors:

• Technical factors – the underlying complexity of the task
itself.

• Psychological factors – the ‘mental models’, for
example, that make it hard for human beings to design
and implement secure software.

• Real-world factors – economic and other social factors
that work against security quality.

4.1. General reasons

This section will outline briefly some of the basic causes of
errors and bugs, without going into technical details, partly
following [38]. If you are familiar with software engineering
or, for example, just followed the discussion about buffer
overflows, you will know most of the stuff presented here
since it should be common knowledge in that part of
computer science. Nevertheless it needs to be presented to
achieve a complete picture of the problems.

The simplest and most general reason is complexity. The
bigger the software is, the more lines of source code are
written and therefore the higher the chance of errors being
introduced. It is, of course, never quite that easy, since the
number of errors also depends on the kind and the language
of code written, but it works as a rule of thumb. Furthermore,

it’s not just about implementation, it’s also about the problem
that perfect reliability and security is not achievable (yet?)
and there is always a chance of errors, especially with more
complex systems [38]. A nice quote that sums it up comes
from Microsoft [39]:

‘The core tenet of ASR (attack surface reduction) is that all
code has a non-zero likelihood of containing one or more
vulnerabilities. Some vulnerabilities will result in
customer compromise. Therefore, the only way to ensure
no customer compromises is to reduce code usage to zero.
ASR is a compromise between perfect safety and
unmitigated risk that minimizes code exposed to untrusted
users. Code quality and attack surface reduction combined
can help produce more secure software. Perfect code
cannot do it alone.’

Another very common reason is the use of ‘old code’ that was
written years ago and is still used in the software. For
example, code to handle zip archives and the like (no wonder
there are so many problems with that). But old code itself
isn’t the problem. The problem is that the old code is often
unchecked and therefore not up to date with today’s security
requirements. When the code was written no one cared if a
buffer overflow might be introduced, since the problem
wasn’t apparent yet. Some C functions are now considered
insecure and should be replaced by their more secure
equivalents. Unfortunately, these functions will introduce new
problems, so they need to be handled with care as well.

The combination of separate components, which are secure
by themselves, could introduce new security holes when put
together. A famous example is the ‘rlogin -l -froot’ bug [38].
The ‘BitDefender bites GFI’ issue we presented above is
another example.

It is also interesting to mention some of the psychological
causes for errors in software. When looking for errors in code,
you find those you are looking for, those you know about and
those you know how to fix, but miss the others. This is the
strength of automated security tests, since they could cover a
broader range of possible error causes. Trust is another very
important psychological issue – don’t trust the user or the user
input, until it has been verified by a trustworthy source.
Finally, we tend to judge by our own personal experiences,
but most likely future attacks aren’t covered by our current
experiences [38].

Last, but not least, there are real-world factors that need to be
considered. One of the most important factors is tight
deadlines. Even if you care about secure code and intensive
testing of your software, there is still only limited time until
the release of a new version or patch is scheduled. Sometimes
it is necessary to settle with the best result possible and ship
the software with possible errors [38]. A similar factor is the
problem of being ‘just secure enough’, making the product
just secure enough so people will still buy it. A great quote
illustrates the point [38]:

‘“When are you guys going to stop shipping this crap?” he
claims the answer he is proudest of was, “Sometime soon
after you folks stop buying it.”’

But it’s also about features and competition. Time spent
finding and fixing bugs is time lost for adding new functions.
One can’t really use security to advertise a product yet
(although we hope this will change), but rather its numerous
and cool features.

INSECURITY IN SECURITY SOFTWARE MORGENSTERN ET AL.

217VIRUS BULLETIN CONFERENCE OCTOBER 2005 ©2005 Virus Bulletin Ltd. No part of this reprint may be
reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

4.2. ‘Vulnerability lifecycle’ (security software
specific)

With the general causes discussed we can now go on to the
more specific ones. We’ve chosen ‘Vulnerability lifecycle’ as
a caption for this section. We won’t rely solely on this model
but it will give us a good start. Let’s have a look at Figure 2
below.

Figure 2 (source: [38]).

This outlines some of the basic problems vendors are facing
today, and can be summed up as follows:

1. Someone uncovers and discloses a new vulnerability in
a piece of software.

2. Bad guys quickly analyse the information and use the
vulnerability to launch attacks against systems or
networks.

3. Simultaneously, good guys start looking for a fix.

4. If the vulnerability is serious, or the attacks are
dramatic, the various media make sure that the public
knows that a new battle is underway.

5. Lots of folks get very worried. Pundits, cranks,
finger-pointers, and copycats do their thing.

6. If a knee-jerk countermeasure is available and might do
some good, we’ll see a lot of it. (For example, CIOs may
direct that all email coming into an enterprise be shut
off.) More often than not, this type of countermeasure
results in numerous and costly business interruptions.

7. When a patch is ready, technically-oriented folks who
pay close attention to such matters obtain, test, and
apply the patch. Everyday system administrators and
ordinary business folks may get the word and follow
through as well. Perhaps, for a lucky few, the patch will
be installed as part of an automated update feature. But
inevitably, many affected systems and networks will
never be patched during the lifetime of the vulnerability,
or will receive the patch only as part of a major version
upgrade.

8. Security technicians, their attention focused, examine
related utilities and code fragments (as well as the new
patch itself!) for similar vulnerabilities. At this point, the
cycle can repeat.

9. Weeks or months go by, and a piece of malicious
software is released on the Internet. This software
automates the exploitation of the vulnerability on
unpatched systems, spreading without control across a
large number of sites. Although many sites have patched
their systems, many have not, and the resulting panic
once again causes a great deal of business interruption
across the Internet [38].

These are important points to consider. We start with a new
vulnerability in software and soon there are attacks and
exploits available. In the meantime, the developers will be
working on a fix. In some very special cases, the media will
take an interest in the vulnerability as well and publish
information about it, hence providing publicity you weren’t
exactly hoping for. When a patch is released, most users will
install it, but some systems might stay unpatched. Now people
start looking for similar vulnerabilities, in the new patch too,
and a new cycle will likely start. And every patch or new
version introduces additional error sources and might lead to
a vulnerability as well. ‘10% to 15% of all security patches
themselves introduce security vulnerabilities’ [38].

In general, this is something that applies to every vendor, not
just the makers of security software. When there is a new
version of a software program, many people don’t update
instantly and prefer to use the older version because they
assume the new version may be buggy. They would rather
wait until the new version has proven to be stable and any
critical bugs have been fixed. However, this approach doesn’t
work for security software, since every update could be
crucial for the company’s security, leaving you with no choice
but to install the update or shut down your computers to be
‘secure’.

Let’s take AV software as a prominent example. AV vendors
need not only to release updates for their own bugs or
vulnerabilities, they also need to release updates for new
malware, and often several times a day. They also need to
release program updates, in this case especially engine
updates, much more often then most other vendors, since new
kinds of attack are popping up constantly.

Just remember the jpeg issues which no one considered until
it happened and required the programs to parse jpeg files.
This has several consequences. First of all, with more
patches released, the chances of errors being introduced is
higher and more broken updates might be released. Also it is
necessary to have every patch, signature or program update
tested thoroughly. This is a lot of work, and ‘normal’
vendors already have problems keeping up with their own
security patches every once in a while. It makes you wonder
how security software vendors are actually dealing with
this problem.

Just to compare numbers, some anti-virus vendors release
10–20 signature updates a day and several engine updates a
month, while Microsoft, for example, releases usually only
one to 10 patches per month. So this is quite an impressive
achievement of the security software vendors. But of course
we have seen enough examples that have shown us the limits
of some vendors. Let’s remember signature or engine updates
that will render the system unusable, taking 99% of the CPU
time or flagging certain clean files as false positives and
deleting them in the worst case. This is certainly a testing
issue that occurs because of the lack of time to do in-depth
testing of every update. When a company schedules updates

INSECURITY IN SECURITY SOFTWARE MORGENSTERN ET AL.

218 VIRUS BULLETIN CONFERENCE OCTOBER 2005 ©2005 Virus Bulletin Ltd. No part of this reprint may be
reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

every few hours there is bound to be some trouble sooner
or later.

While this is the most important issue, there are more that are
unique to security software and need to be mentioned as well.
Security software is dealing with malicious intents and inputs.
This is something that should always be kept in mind.
Security software shouldn’t trust any input unless it can be
verified. On the one hand, this refers to the malicious files
that are scanned. See the aforementioned archive examples
where some simple manipulations will let them slip through
as clean files. But it also refers to the idea of the attack surface
again. While other kinds of software just lock out potentially
malicious inputs to reduce the attack surface, anti-virus
scanners have to actively interact with malicious input to scan
it and open up new possibilities for security flaws. And,
finally, the application shouldn’t trust the components of the
software itself. Signature files can be manipulated unless they
are cryptographically signed, but we don’t see many of these
yet. On the contrary, most of the vendors use very basic
algorithms to cover the real content of their signature files,
which don’t pose a challenge to experienced virus writers.
Also, integrity checks of the program files aren’t carried out
by all vendors. These and similar issues introduce additional
security flaws which aren’t really necessary.

Last, but not least, it seems that some vendors must get used
to the fact that their software is now a target of security
vulnerabilities. Granted, this is a relatively new threat to
security software, but it needs to be handled with the same
care and speed as, for example, outbreaks. It’s just
unacceptable when fixing a security-related bug takes several
weeks or even more!

4.3. Conclusion

In addition to the usual causes of bugs and security flaws in
software, there are a few specific causes in security software.
The massive amount of updates is the most important, causing
problems for both the vendor and the user. The vendor needs
to make sure every update is ok and doesn’t introduce new
security issues, while the user doesn’t, or just can’t, trust
newly-released updates and needs to carry out their own tests
– or simply wait to update the systems. This leads to the
concept of trust, which is one of the points that will be
discussed in the next section, as well as some basic advice for
both the vendor and the user.

5. WHAT TO DO?
Advising as to what to do is the tough part, since some of the
advice given here may not be applicable and some is already
in use. Further, most of the advice is theoretical and not
applicable generally. But still it’s necessary to give some
direction on what is possible, for both the user and the vendor.

5.1. User

Let’s have a look at the average home user of security
software as well as the enterprise user. While they have some
very common needs there are also some differences. The
requirements they have in common are easy: they want the
security software to secure them. To achieve this it is
necessary to update the software constantly, as well as the
signature files, in the case of an anti-virus software. This is
where the differences occur.

While the home user may prefer an automated method of
updating and can cope with a flawed update from time to
time, the enterprise user has some different needs. The
administrator in an enterprise environment cannot risk
downtime of the computer system just because of a flawed
update. So it is likely that their own tests will be carried out
before an update is deployed. This, however, can take
precious time and will increase the risk of infection when
talking about viruses/worms.

On the other hand, there are still enough users that don’t
really care about updating their security software – they just
aren’t aware of the necessity. A nice report can be found in
[40], which show how users actually update their systems.
This PDF is especially interesting since it discusses a security
hole of the OpenSSL toolkit which is usually used in
security-aware environments. The outcome is somewhat
surprising. While about 35% of the administrators updated
their version relatively quickly (within one week, only 16%
updated in the first two days), the other 65% percent didn’t
take any actions in the next 30 days [40]. The interesting thing
however is, as soon as a worm that exploited the vulnerability
(Slapper) was released, the updating and patching of the
flawed versions started again and the percentage of vulnerable
versions fell from 60% to 30%. The paper also discusses the
causes for these events and comes to the same result as we did
before [40]:

‘[...] it’s sometimes undesirable to update immediately,
since patches are flawed. Moreover, it may not be
convenient to patch immediately.’

Both problems – flawed updates and users not deploying
updates – lead to a simple yet effective piece of advice: use
several layers of security. This starts at home with more than
just one anti-virus solution and additional firewall software.
At best a personal desktop firewall and a built-in firewall in
your router or similar. But it is especially important in
enterprise environments with different AV solutions on the
gateways, servers and clients. The same goes for firewalls,
again on the desktop, but also on the servers and gateways.
Multi-scanner systems can help to improve security a lot here
as well. This way it is possible to test updates first and make
sure they don’t have a negative impact on your system without
being put at an instant risk if you don’t install them at once.

Still, it would be better if the updates (or software in general)
would always work (or at least not cause additional harm) and
the user would/could trust them. These are the goals vendors
should be aiming for.

5.2. Vendor

The two desired goals just presented will give the outline for
this part. We will first take a look at the goal of working and
secure (error-free or at least not introducing security
vulnerabilities) software. Of course, this is not 100%
achievable, but a few actions can be taken to get near it. In the
second part we will take a short look at trustworthy
computing and see how this is relevant for security software.

5.2.1. General actions

The first goal can be split into two parts. One concerns the
generation of code, respectively the developing of software
from design over implementation up to operation. The other
part is about automation and testing. Of course, these are

INSECURITY IN SECURITY SOFTWARE MORGENSTERN ET AL.

219VIRUS BULLETIN CONFERENCE OCTOBER 2005 ©2005 Virus Bulletin Ltd. No part of this reprint may be
reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

things that should usually be seen as a whole. But automation
and testing become especially important because of the
number of updates released in the security software sector.

Secure coding already starts with secure architecture and
design. Of course there are many general and theoretical
models known from software engineering regarding this and
other problems. Luckily, some vendors have already
implemented secure development methods. We will have a
short look at the Microsoft way of doing it: The Trustworthy
Computing Security Development Lifecycle [41], since it
contains everything from architecture up to implementation,
just what we need. Microsoft introduces four principles of
secure development: secure by design, secure by default,
secure in deployment and communications.

• Secure by design: the software should be architected,
designed, and implemented so as to protect itself and the
information it processes, and to resist attacks.

• Secure by default: in the real world, software will not
achieve perfect security, so designers should assume that
security flaws will be present. To minimize the harm that
occurs when attackers target these remaining flaws, the
software’s default state should promote security.

• Secure in deployment: tools and guidance should
accompany software to help end users and/or
administrators use it securely. Additionally, updates
should be easy to deploy.

 • Communications: software developers should be
prepared for the discovery of product vulnerabilities and
should communicate openly and responsibly with end
users and/or administrators to help them take protective
action (such as patching or deploying workarounds) [41].

These are points we considered before but we have not yet
shown how to accomplish them. Therefore, we will give a
short overview of how Microsoft proposes it. The
development lifecycle process is split up into different phases,
starting with the requirements phase, over to design and
implementation phases, followed by verification and release
phase, and finally the support and servicing phase.

The requirements phase is, of course, the start of security
work. Security milestones and criteria are decided, the
integration of security and key security objectives are
considered in this phase. Planning documents should be
produced that define the security objectives explicitly.

The design phase will take the first ideas and requirements a
step further. Security architecture and guidelines are decided
as well as design techniques. In detail, these are things like
‘layering, use of strongly typed language, application of least
privilege, and minimization of attack surface’, which are
global things [41]. In addition, the security of individual
elements should be specified and designed individually as
well. Other steps of the design phase involve the
documentation of the software’s attack surface, threat
modelling and defining additional ship criteria (regarding
security).

The implementation phase is usually considered the most
important, since the actual coding, testing and integration
takes place here. Actions taken to remove security flaws at
this stage are usually considered highly effective. Also, good
design specifications start to pay off here, if proper threat
modelling has been done this can be used to pay special

attention to identified high-priority threats. Some of the
detailed actions in this phase are:

• Apply coding and testing standards. Coding standards
help developers to avoid introducing flaws that can lead
to security vulnerabilities. Testing standards and best
practices help to ensure that testing focuses on detecting
potential security vulnerabilities rather than
concentrating only on the correct operation of software
functions and features.

• Apply security-testing tools including fuzzing tools.
‘Fuzzing’ supplies structured but invalid inputs to
software application programming interfaces (APIs) and
network interfaces so as to maximize the likelihood of
detecting errors that may lead to software vulnerabilities.

• Apply static analysis code scanning tools. Tools can
detect some kinds of coding flaws that result in
vulnerabilities, including buffer overruns, integer
overruns, and uninitialized variables.

• Conduct code reviews. Code reviews supplement
automated tools and tests by applying the efforts of
trained developers to examine source code and detect and
remove potential security vulnerabilities [41].

The verification phase contains the start of user beta testing of
the software. In the meantime, a ‘security push’ is started, as
Microsoft calls it. This will include additional code reviews
and security testing. Doing this in the verification phase
ensures that all the testing and checking actually targets the
final version of the version and some work in progress [41].

The release phase is the time of final security reviews, FSR, to
make sure the software is ready to be delivered to the user.
Possibly, code reviews and penetration testing should be
conducted by outsiders to check for vulnerabilities. In the
end, the FSR should give an overview of how well the
software will withstand attacks. If vulnerabilities are found
these should be fixed and the earlier phases should be
reviewed again [41].

Finally, the support and service phase begins. The
development doesn’t end with the shipping of a product.
Rather, the product team needs to react on discovered
vulnerabilities in their software. This involves the ability to
evaluate vulnerability reports as well as releasing security
advisories and updates. On the other hand, it is also important
to perform a post mortem analysis of the vulnerability and
take appropriate action to prevent similar errors in the future.
The main objective in this phase is: learn from your errors [41].

Something that hasn’t been mentioned yet is education. While
this should be common sense we still want to stress the fact.
Educate yourself and your employees, follow security
advisories and alerts and train your people. Black hat guys
certainly will, so don’t get left behind.

Lastly, we want to note some very short and specific actions
as examples. Let’s get back to the archive problems presented
above. If scanning an archive may introduce buffer overflows,
one might think about easy integrity checkers (not only for
archive files, of course), as well as the possibility of easy filter
rules. These rules might depend on the file’s extension and the
(basic) header, therefore not doing any actual parsing.
Different handling methods could be configured, archive files
could be let through on the gateways, in order to keep the
gateways safe and not to risk any buffer overflows over there.

INSECURITY IN SECURITY SOFTWARE MORGENSTERN ET AL.

220 VIRUS BULLETIN CONFERENCE OCTOBER 2005 ©2005 Virus Bulletin Ltd. No part of this reprint may be
reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

In the next step, the anti-virus software on the desktop could
handle the file. Or possibly corrupted files can be put into
quarantine and be checked with other tools later.

Another piece of advice for security-related software is the
use of sandbox-like techniques as well as operating with
minimal user rights. First, it should be impossible for any
malware to ‘evade’ the virus scanner and cause harm just
because it is being scanned. And second, if a malware evades
nonetheless or causes a buffer overflow it shouldn’t be able to
do that with administrator rights.

Finally, yet another word on patches: many security products
use third-party libraries like the OpenSSL toolkit which needs
some security updates from time to time as well. Be sure to
consider this when using third-party components and provide
your users with a convenient way of patching, not just for
your core product but for these components as well.

With these general actions presented we want to stress an
important point for security software vendors. The testing of
software, especially of updates, is one of the most important
tasks for these vendors. This becomes obvious when we
consider the number of updates released daily/weekly/
monthly and compare it to other vendors. So invest a lot in
your QA and testing if you want your users to trust your
software – which in the end means they will buy your
software. To make this point just a bit clearer we will take a
very short look at trustworthy computing since this becomes
important in a lot of ways. Just think about automatic updates,
I know many security -aware people that disable those
because they just don’t trust them and don’t want their system
to break down because of a flawed update.

5.2.2. Trustworthy computing

In this part we will again refer to a Microsoft paper [6]. We
will give a very short overview of why trust and
trustworthiness is important for vendors and how this could
possibly be achieved. All the details can be read in the paper
mentioned above.

As we already mentioned, users need to trust software if they
are supposed to use it. This is especially crucial when it
comes to security-related software. If there is a security flaw
in a media player, for example, the users might be ok with
that, since security isn’t the business of that vendor. But when
there is a security flaw in security software, the user certainly
won’t be ok with that. When the security vendors can’t even
secure their own products, how are they supposed to secure
the user?

No one wants additional risks because of flawed software.
While normal software has the problem of trust only once in a
while, with every new version released or when a security
vulnerability is found, security software vendors face this
problem maybe daily with every new update or patch they
release. Each time the user has to decide once again if he
trusts the vendor and whether he can install the update or not.
And even if you gain the trust of the user, there is no
guarantee that you will not lose it again.

So what can a vendor do to gain and keep the user’s trust?
Microsoft presents four goals from the user’s point of view:
‘security’, ‘privacy’, ‘reliability’ and ‘business integrity’.
Followed by these goals are the means by which the industry
should achieve these goals. Some of them we presented in the
previous section, such as ‘secure by design/default and in

deployment’, and also ‘fair information principles’,
‘availability’, ‘manageability’, ‘accuracy’, ‘usability’,
‘responsiveness’ and ‘transparency’. Most of these are
self-explanatory and otherwise they are discussed in detail in
the Microsoft paper. In the last step, execution of these points
is explained, which consists of ‘intent’, ‘implementation’ and
‘evidence’. With this framework it should be possible to
accomplish the challenges we presented.

6. CONCLUSION

What did we learn from this paper? Security vulnerabilities
are an industry-wide problem, but they are increasingly
affecting security software as well. Microsoft isn’t the only
target today, but rather any software that promises some
success in exploiting. Additionally, next to these ‘classic’
threats of security vulnerabilities like buffer overflows,
special problems of security software need to be considered.
Every error could be security-relevant when it happens in
security software! Also, the high number of updates
introduces additional problems. This can lead to a loss in
trustworthiness, which is an important resource for
security-related software.

So, what should be done? First, all the classic measures
should be taken to secure your code. Great publications have
been released and industry-wide accepted standards have
been developed to aid in that task. Secondly, the special
problems of security software need to be addressed. This
involves the update cycles that need very careful testing and
quality assurance, as well as educating the users and winning
and keeping their trust. The users need to use a responsible
way of updating: ‘Update often, update early, not too often
and not too early though’. Last but not least, several layers of
security should be used to cope with the failure of the one or
the other layer.

Now, what to expect in the future? An increase in attacks and
uncovered security vulnerabilities is a very likely scenario.
The security holes uncovered by security analysts today might
pose as examples for security holes uncovered by ‘black hat’
hackers tomorrow. This will eventually force vendors to act
and react, and sooner or later this part of the game will end.
But rest assured another game will already have begun ...

REFERENCES

[1] Burgess, Mark; ‘Computer Security’, Lecture Notes,
2001, http://www.iwar.org.uk/comsec/resources/
security-lecture/show50b7.html.

[2] Wikipedia article ‘Software security vulnerability’,
http://en.wikipedia.org/wiki/Security_vulnerability.

[3] Bishop, Matt; Introduction to Computer Security,
Prentice Hall PTR, 2004.

[4] Jaquith, Andrew; ‘Fear and Loathing in Las Vegas:
The Hackers Turn Pro’, 2005,
http://www.yankeegroup.com/public/products/
decision_note.jsp?ID=13157.

[5] Brenner, Bill; ‘SANS: Security software increasingly
vulnerable’, 2005,
http://searchwindowssecurity.techtarget.com/
originalContent/
0,289142,sid45_gci1084940,00.html?bucket=NEWS.

INSECURITY IN SECURITY SOFTWARE MORGENSTERN ET AL.

221VIRUS BULLETIN CONFERENCE OCTOBER 2005 ©2005 Virus Bulletin Ltd. No part of this reprint may be
reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

[6] Mundie, Craig; ‘Trustworthy Computing - Microsoft
Whitepaper’, 2002, http://www.microsoft.com/
mscorp/twc/twc_whitepaper.mspx.

[7] http://xforce.iss.net/xforce/alerts/id/167.

[8] http://www.trendmicro.com/vinfo/secadvisories/
default6.asp?VName=Vulnerability+in+VSAPI+ARJ
+parsing+could+allow+Remote+Code+execution.

[9] http://xforce.iss.net/xforce/alerts/id/188.

[10] http://xforce.iss.net/xforce/alerts/id/190.

[11] http://xforce.iss.net/xforce/alerts/id/187.

[12] http://pb.specialised.info/all/adv/avast-adv.txt.

[13] http://www.rem0te.com/public/images/vet.pdf.

[14] http://www.softsphere.com/security/.

[15] http://www.idefense.com/application/poi/
display?id=189&type=vulnerabilities&flashstatus=true.

[16] http://pb.specialised.info/all/adv/sice-adv.txt.

[17] http://securityresponse.symantec.com/avcenter/
security/Content/2005.03.15.html.

[18] http://www.securityfocus.com/archive/1/393747.

[19] http://pb.specialised.info/all/adv/olly-int3-adv.txt.

[20] http://neosecurityteam.net/Advisories/
Advisory-10.txt.

[21] http://pb.specialised.info/all/adv/ida-debugger-adv.txt.

[22] http://www.security-assessment.com/Whitepapers/
PreDebug.pdf.

[23] http://www.idefense.com/application/poi/
display?id=276&type=vulnerabilities.

[24] http://www.idefense.com/application/poi/
display?id=275&type=vulnerabilities.

[25] http://www.trendmicro.com/en/support/pattern594/
overview.htm.

[26] http://isc.sans.org/diary.php?date=2005-04-23.

[27] http://www.zdnet.co.uk/print/?TYPE=story&AT=
39196220-39020375t-10000025c.

[28] http://www.securityfocus.com/infocus/1822.

[29] http://www.heise.de/security/artikel/52139/2.

[30] http://securityresponse.symantec.com/avcenter/venc/
data/w2k.stream.html.

[31] http://securityresponse.symantec.com/avcenter/
security/Content/2005.04.27.html.

[32] ftp://ftp.aerasec.de/pub/advisories/unfiltered-escape-
sequences/.

[33] http://www.theregister.co.uk/2005/03/02/
gfi_beserker/.

[34] http://www.computerpartner.de/news/226206/
index.html.

[35] http://securityresponse.symantec.com/avcenter/
security/Content/2005.05.31a.html.

[36] http://secunia.com/advisories/14989/.

[37] http://cert.uni-stuttgart.de/archive/bugtraq/2003/03/
msg00264.html.

[38] Graff, Mark G.; and van Wyk, Kenneth R.; Secure
Coding: Principles & Practices, O’Reilly, 2003.

[39] Howard, Michael; ‘Attack Surface - Mitigate
Security Risks by Minimizing the Code You Expose
to Untrusted Users’, MSDN Magazine, November
2004, http://msdn.microsoft.com/msdnmag/issues/
04/11/AttackSurface/default.aspx.

[40] Rescorla, Eric; ‘Security holes... Who cares?’,
Proceedings of the 12th USENIX Security
Conference, 2003, http://www.rtfm.com/upgrade.pdf.

[41] Lipner, Steve and Howard, Michael; ‘The
Trustworthy Computing Security Development
Lifecycle’, 2005, http://msdn.microsoft.com/security/
default.aspx?pull=/library/en-us/dnsecure/html/
sdl.asp.

