
EICAR 2000 Best Paper Proceedings

EICAR Best Paper Proceedings
Edited by Urs E. Gatikker, EICAR c/o TIM World ApS, Aalborg, Denmark, ISBN: 87-987271-1-7
www.papers.weburb.dk

A Guideline to Anti-Malware-Software testing

Trend Micro Student Runner Up Award

Andreas Marx1

Student of Business Information Systems at the Otto-von-Guericke-University
Magdeburg

About the Author

The author was born 1979 in Magdeburg, Germany. In 1991 he became interested in
computer viruses when he got the Yankee_Doodle virus and he started to write his first
anti-virus program called CGL. It was based on integrity checking and used heuristic rules
against boot and file infectors. In 1996 he won two first prizes and the 5th prize overall at
the “Jugend forscht” competition. After this accomplishment, he started to write anti-virus-
tests for the “Anti-Virus-News” magazine. Since 1997, he has written virus-based articles
and tests for the German “CHIP” computer magazine and has performed large anti-virus
comparison tests in 1998 and 1999. He also performed tests for the “WIN” and the
“PConline” magazines in 1999. Since October 1999, he has been working for the “PC
Welt” magazine, too. After finishing his military service, he started to study at the Otto-von-
Guericke-University Magdeburg.

Mailing address: Andreas Marx, Foerderstedter Strasse 11, D-39112 Magdeburg,
Germany, Phone: +49(0)391 613303; Fax: +49(0)391 6218501; E-Mail:
amarx@gegasoft.de

Descriptors

Anti-virus testing, malware testing, virus detection, computer security, malicious software,
program testing, black box tests, software evaluation, sorting virus collections, publishing
articles

Reference to this paper should be made as follows: Marx, A. (2000) ‘A Guideline to Anti-
Malware-Software testing’, EICAR 2000 Best Paper Proceedings, pp.218-253.

1 I would like to thank Prof. Dr. Claus Rautenstrauch and all the people who helped me to write and improve
this paper.

EICAR 2000 Best Paper Proceedings

219

A Guideline to Anti-Malware-Software Testing

Abstract

Today, most of the popular anti-virus test strategies are obsolete. Index numbers like “best
detection score” are unsatisfying, because a program can only find viruses it searches for
and the number may be a little bit accelerated by heuristic rules to find new and unknown
viruses. This way of testing is possibly interesting for anti-virus researchers, but not the
real world, because the customers do not know what to do with all the numbers in the
tables.

Therefore a closer look at the real needs is required. This includes on-demand, on-access,
disinfection and false positive testing of the products. The goal for this type of testing is not
a mass test, but a test which is as exact as possible. Of course, a test of anti-virus
products should include stability tests, tests of user-friendliness, security, efficiency,
compatibility, documentation, support, installation and many other things, too. After a test,
usually a review have to be written and the test is going to be published in a magazine,
however, there are some problems which can occur and they will be described in this
paper, too.

It discusses the need for current and future enhancement in anti-virus-testing techniques
for IBM-compatible computers, including the foundations and limitations on such testing.

EICAR 2000 Best Paper Proceedings

220

Introduction

This paper describes a methodical framework for anti-virus program testing for small and
home office use. It is written for data security managers and for professional testers who
write for magazines. However, all practical considerations are limited to anti-virus
programs running under Windows ’9x, due to the large amount of users having installed
this system, but most features can be tested under Windows NT with only minor
adjustments. Aspects besides testing, like management, education and policies can be
found in (Wack & Carnahan 1989). Larger overviews over this topic can be found in (Polk
& Bassham 1992). This paper shows often found errors and how to avoid them. There are
several certification schemes (Gordon & Ford 1996), like ITSEC, but this paper has been
written for an other target group.

Before going into detail on the testing methods, two major ways to protect the user from
being infected by computer viruses will be introduced. They can be classified in software-
and hardware solutions and follow different philosophies and realizations.

Software Protection Mechanisms

Software protections against viruses are usually the well-known anti-virus programs that
can be exerted under different operating systems, like Windows, DOS, Netware, OS/2,
Macintosh, Linux or professional Unix systems. Together with special application tools like
Lotus Notes or Microsoft Exchange, they are used to keep the system virus-free. An anti-
virus program is employed scanning for viruses in files at real-time or periodically. If
viruses are found, the files can be disinfected or deleted. Furthermore, information about
the virus problem and the infected files can be given to the user for further decisions.
Some programs use content filtering to be able to delete spam, junk mails and hoaxes
automatically and some use unusual, non-anti-virus related features, like the detection of
non-Y2K compliant macros or Excel sheets.

In large companies, the information technology (IT) infrastructure often is very complex
using different operating systems, networks, and hardware platforms. However, virus
protection in such heterogeneous environments will not be discussed here, since the
particular challenges in such environments would fill another paper.

Hardware Protection Mechanisms

Hardware protection mechanisms like “Trend Chip Away Virus” (Jang 1998) or the “Virus
Warning” feature - both can be found in newer BIOS versions - will not be discussed here
in detail because only newer computers (around 1997 for the first and around 1994 for the
second solution) have this feature and they are disabled by default. Older computers -
systems that very likely only work under DOS - do not have such methods to protect the
system against boot viruses.

Some viruses fool this form of protection, because it is easy to deactivate the hurdle before
infection and reactivate it afterwards. The reason for this is that it is a simple and
unprotected implementation - the configuration data is saved in the CMOS area where

EICAR 2000 Best Paper Proceedings

221

everyone has access. Both hardware protection solutions have limited use, often trigger
unexpected problems, and only work with boot sector viruses. If a tester replicates viruses
or wants to test the detection of boot viruses by using a scanner, those options have to be
disabled to get correct results.

Part I - Prerequisites for Evaluation and Testing

In this chapter, the preconditions for anti-virus testing will be discussed. Though some of
the preconditions may seem trivial, they are essential and often overlooked.

Four Important Points of Interest to Testers

First, the tester must have knowledge about the theoretical foundations of viruses and anti-
virus testing. The tester must be clear on what to do with viruses, how they work and what
kind of damage they are able to cause. The tester should carefully work with the viruses in
an isolated environment and the tester should know how to review anti-virus products,
which criteria are important, and which should not be tested because they are irrelevant.

The second point is, that the tester has to be independent from every anti-virus company
and such a company must not sponsor the test. Obviously, even if testers do not cheat,
the sponsor’s criteria often include items that the sponsor knows their product will meet
and “by accident” the sponsor’s product may be the one that is evaluated as best. An
example of this affect can be seen in (ZDTag 1999). Another problem of sponsoring
occurs if the tester exclusively uses the virus database of one company for the test. This is
not objective, because the tester only receives viruses the particular sponsor’s program is
able to find and repair, and not necessarily the viruses that cause the product difficulty.

Third, the tester requires a project plan that depicts what to do and in what order. There
should be enough time for all of the things to do, like preparing the test, sorting the virus
collection, setting up the computers, getting the products to test, evaluating and testing all
programs, writing an article or reporting about it and discussing it with the publishers to
make a good story. Usually, there are some problems with parts of the tests that require
some extra time. For example, if a product is very slow or crashes on huge virus
collections, the testing will have to be restarted often. For this, some buffer time should be
taken into account.

Fourth, the acquisition of resources should be made according to the budget. For example,
if one or more supporters and several PCs are needed to test the programs parallelly,
those systems must be acquired before testing can be started. Usually, the virus collection
used for the test has to be write-protected on a server. The clients scan it and write the
report file to a local disc. The server has to be administrated and the clients have to be
installed correctly. Of course, the test network has to be completely (hardware-) isolated
from the rest of the other computers in the tester’s organization. Enough disk space for the
programs, the virus test set (especially the large polymorphic test sets) and the report files
have to be available, too.

EICAR 2000 Best Paper Proceedings

222

How to Get Products for Testing?

Obviously, testers have to use current versions of anti-virus programs from the anti-virus
companies. Therefore, the companies have to be informed about the deadlines of the test.
This includes the feedback deadlines such as responding on whether they want to take
part in the test or not (not answering means not), completing a survey with some facts
about the products (available OSes or where to buy it) and sending the products to the
reviewer including all updates which should be used.

It should be self-evident that if a company does not want to see their program tested, it will
not be tested. The reasons for declining to take part could include a desire to wait for
release of new versions or major updates soon, or a concern for performance. If they do
not want to take part in the test, because they know that their products are not very good,
the tester has offer two options. The first is, the tester will still test the program, but he has
to buy it in a shop and get the updates via internet or snail mail using the normal update
scheme. The second possibility is that the tester will make a notice about this fact in the
review only and the program will not be tested at all. It is worth noting that when a
company does not take part in any test and they may be forgotten, because users usually
buy only programs where they know what they will get for the money.

If there are too many companies who plan to release new major versions in near future, it
may be that the test should be postponed, because it will be outdated when published. If
an anti-virus company has only sent a beta version of the program, it should be tested
separately and without a final conclusion.

An invitation to the test has to be sent out to the companies usually one month before the
test starts to offer them enough time to decide whether they want to take part in the test or
not, and which versions of their programs should be submitted. Addresses of developers
can be found in (Link 1999).

The invitation which can be sent via (e-)mail or fax to the anti-virus company should
include at least the following topics:

- The objective of the test, i.e., for which magazine (and issue, if known) or which
company is the test? This helps the anti-virus company to decide if the test is
interesting or not, and if it is the right target group.

- Under which operating systems is the test is going to be performed (exact version)

- The subject of the test, like finding the most zoo viruses only or the more important ITW
(“ in-the wild” , viruses which are known to be common) ones. Maybe tests about
disinfection or the virus guard special functions for small or medium companies like fast
update distribution and things like user-friendliness or the functionality should be
mentioned here.

- It should be asked, which options/settings are recommended for the GUI (or command-
line) version of the program in all tests - to scan for viruses and false positives, too. The
parameters have to be clearly documented and it should not be a paranoid long list.

EICAR 2000 Best Paper Proceedings

223

Some programs can be switched to (quick and dirty) modes where they can find many
more viruses, but this increases the change of false positives dramatically and the scan
speed grows by a factor of five. Another solution would be to use default settings only
without any changes on the configuration (with one exclusion: the “scan all files” option)
- a common scenario.

- The name, e-mail, telephone and/or fax of a contact person who can support the tester
if there are some questions and further expertise is required.

- The deadlines mentioned above for the test that have to be the same for every
program. It should be noted clearly that software can only be included into the test, if
the deadline for sending the programs and all updates is met.

- What has to be delivered? It could be a program CD only including the software and
online documentation or the complete package including a printed manual etc. If the
test includes comparison of different tools on the CD, the user’s manual, rescue discs
etc., the anti-virus companies have to send the complete package as it could be bought
in a computer store.

- What about updates? Anti-virus programs become obsolete very fast, and therefore, all
updates the tester should use have to be sent together with the program. It should be
made clear that the responsibility for offered updates and releases is assigned to the
anti-virus companies only. It is important that all programs have nearly the same date
where they were last updated.

- A snail-mail address to which the products should be sent has to be included in this
information as well as the e-mail address, telephone and fax of the tester for questions
about this procedure.

It is up to the tester if software submissions or updates received via e-mail will be
accepted. Usually, the tester will receive several ten megabyte files of data in a very short
period of time. It could be a big problem if the mailbox does not have the capacity for this
huge amount of data or if the download of the files requires some hours. The tester can
also download all the files needed from the Internet, but it could be that this is not the most
current version or only a limited shareware or evaluation version.

Normally, companies are open minded about such tests. Unfortunately, sometimes there
are companies who “ forget” to answer and should be reminded at least two times before
they will be removed from the test. There is often a little communication problem between
the tester and the tested company. Replies are not answered or other feedback is missing.

About one week before the final deadline, all companies should be reminded about the
test. The people working there are often extremely busy and some things might go wrong.
After receiving the products, it should be checked to verify that all companies sent the right
versions for the test and that the package is complete, including all updates.

EICAR 2000 Best Paper Proceedings

224

Preparing the Virus Collection

A malware collection should contain viruses, worms, Trojan horses and other malicious
code. The objective of sorting and structuring the virus collection is to find the “minimal” set
of all relevant viruses which is applicable to meet the requirements of the test. There are
large numbers of viruses that exist now, however, most of them are simply unimportant,
like more than 14,000 viruses, which were generated using a virus construction kit (Ducklin
1999b). Definitions of it can be found in (Marx & Michl 1999; Marx & Günther 1999; Marx
1999b; Luckhard & Siering 1999) and future aspects of malware are discussed in
(Brunnstein & Schmall 1999). Malware is defined here as software which is made
intentionally for sabotage of operational software environments. Therefore, jokes are not
included in this definition. All sorts of malware have to be tested, because we want to test
anti-malware programs and not only anti-virus ones. This has been shown during
outbreaks of worms like Melissa or Explore_Zip. Trojan horses like Backdoors can be
found more often, too. However, malware, like worms, are not viruses at all but most
vendors call their products anti-virus programs and not anti-malware programs. For more
aspects on the identification problems see (Whalley 1999).

This section gives a brief overview on the complex and difficult task of preparing good
samples for testing and the (still unsolved) problems for sorting and structuring a virus test
set. A checklist for non-macro and non-script viruses can be found in (Bontchev 1993).

Getting “something”, maybe viruses are included.

There are different ways of getting and making a collection to test anti-virus programs. The
first idea - which will hopefully never be seen anymore - is to employ a Virus Simulator like
VS^2 by Boff Consulting or VirSim by Rosenthal Engineering and generate “ test viruses” .
These “viruses” only contain a simple routine to print out a message or copyright notice
(host) and exit to the OS. Attached to these easy programs are some strings from known
viruses like Jerusalem or Vienna that can be found near the beginning of the viruses, but
they will never be executed in these “ test viruses” . Of course, it makes no sense to test the
detection of these files, because they are neither viruses, nor malware, nor contain other
malicious code and their design patterns are known and very simple, because the host
does not change in most cases. In other words, they do not show, if a program is able to
detect real viruses. These and other aspects are discussed in (Gordon 1995).

A second idea to discuss - and this will hopefully never be seen anymore, too - would be
the creation of new viruses using a virus construction kit, for example VCL, PS-MPC, IVP,
or to write new viruses or create new variants. It is a bad idea to use these kits to generate
new viruses in order to test anti-virus programs, because most of the products know the
design patterns and can find all variants easily. Second, still enough viruses exists and
there is no need to create more of them.

Third, a tester could ask the anti-virus companies to supply viruses. This will fail in most
cases, because they will not give samples to unauthorized persons. However, in some
cases, for example, if the tester has a high reputation in the anti-virus community, the
tester may be able to get parts of the required collections or at least some samples still
missing. Of course, to be fair against all producers of such security programs, the tester

EICAR 2000 Best Paper Proceedings

225

should only use parts of every collection (the more, the better, because of the mixture of
the samples) received, but should include only replicated samples where possible. The
reason is that anti-virus companies often only give samples of which they know that their
program will find. Sometimes viruses are added “hard” to the database using a CRC sum
over the full length of the file and because of this only this file will be found by the scanner,
but not replicated samples. Examples for this are viruses like Zhengxi or SSR that are very
hard to detect.

As mentioned above more than one or two collections should be used, because the
“sponsors” of such collections will usually win the competitions with the best detection
score. Normally, such collections are sorted quite well (but always using different schemes
and different philosophies) and are usually free from non-malware, intended viruses, and
innocent programs. However, it will still contain some files (up to 1 or 2%), which do not
belong in such collections, even if all anti-virus programs are able to identify these files.
The reason these files make it into the collection is that the companies receive them often
enough (because they can be found in every badly sorted virus collection or most other
programs will find them), so they simply added detection for these files to satisfy such
people and keep them quiet. Another aspect is that the file contains a damaged virus
version, but most scanners will still find the virus or a part of it, because of an inexact
identification.

An often-used method for testers to get viruses is to download them from the Internet,
other network systems (like Fido) or from special virus exchange (VX) bulletin board
systems (BBSes) or FTP sites. Often, very complete-looking collections can be found
there with many unknown viruses and ones that are not detectable by most recent
scanners. However, the reason for this non-detection is that most collections contain a lot
of non-viral programs (trash). “They contain huge numbers of viruses, non-viruses, Trojan
horses, joke programs, intended viruses (programs written with the obvious intent to write
a virus, but too buggy to replicate even once), corrupted files, text files, virus creation
tools, completely innocent files, and so on” (Bontchev 1993, Introduction). Therefore, if a
tester wants to get samples for a virus test set here, viruses should be separated very
carefully from the trash (usually more than 10%).

For this task, a file weeder utility can be extremely useful, which includes the information
about all known non-virus programs found in such collections. An example of such a tool is
DustBin written by Network Associates (formerly Dr. Solomon’s). Ideally all anti-virus
developers should be contributing to such a tool, so that cheating or mistakes caused by
inexact virus analyses are nearly impossible. Such weeders should include all TXT, ASM,
files with advertisements for BBS’es (BBS addy’s), not working viruses in DOC, XLS, EXE,
COM and SYS files, etc. This would solve a hard problem for testers who have to decide
which files to add or leave away. It goes without saying that such utilities have to be
updated on a regular basis (like anti-virus programs). To be as exact as possible and
avoiding false positives, it should not use old CRC32 checksums, but more professional
MD5 hashes and some more information on the files, like the type or length of segments in
the file.

There is still another possibility: The tester does not evaluate the detection rates of the
scanners at all using big collections, but using only good-sorted ITW ones. For the large

EICAR 2000 Best Paper Proceedings

226

database tests, the tester can use tests from some valued outside organization, like some
reputable, independent testing centers. However, most of the time, they will use other
versions of the program, usually because not all the programs the tester needed are
included or the tests are too old. For this reason, the tester could send the complete
packages for testing against all or most virus-related categories as desired, even if it will
costs a lot of money. The other categories to be tested can be done without using viruses
but rather the EICAR test file, which is not a virus, but a harmless program that displays
that it is a test file only. This file and additional information can be found in (Ducklin 1995).
By now, every scanner will find it. However, such a test file only exists in an DOS/File
(COM) virus form at the moment, not in macro virus environments (Abrams 1999), so the
testing possibilities are limited.

Unpacking and pre-sorting the malicious code

The final collection has to be weedered using programs like TBWeeder by Frans Veldman,
Duplicate File Locator by William Ataras, Rose’s File Weeder (RFW) by Ralph Roth, Linux
File Weeder by Gerald Scheidl or DBScheck by Norbert Huth. In this process, duplicates
will be removed. Unfortunately, some programs like TBWeeder can only handle a limited
number of files and RFW gets very slow with thousands of files in the database. Archives
(like ZIP, ARJ, LZH, RAR or ACE) should be completely unpacked before testing. It is also
a good idea to keep pre-sorted databases in their original state and not to t copy all files
into one directory, because this accelerates the sorting process.

Now the collection should be grouped into different categories like macro viruses, boot
images, file viruses and non-viruses. Non-viruses should be kept on the disk in a special
directory so that next time they could be deleted automatically using the file weeder to
avoid additional work in the future.

Table 1 shows the most important facts on the files types and their recognition. However,
there are quite a low number of viruses that use the same headers or extensions to
confuse the scanners. A question mark in the detection column represents an undefined
letter. For script-based viruses, it is the same if the letters are upper- or lowercased.

It should be noted that some programs are still unable to report O97M viruses correctly;
therefore they will use the prefix of the actual infection only (like W97M or X97M). Other
programs might use slightly modified conventions like WM97 or XM97 (Sophos 1999) or
simply a different one.

This is only an overview of the most important file formats, see also (Scheidl 1999) for a
list of more file formats that could be infected and for the suggested naming conventions
for these types of malicious code.

EICAR 2000 Best Paper Proceedings

227

Type Detection Comment
Macro viruses
(OLE/COM file
format)

Extensions: usually DO?, XL?, PPT,
RTF (sometimes) or none; Header: D0
CF 11 E0 A1 B1 1A E1 (hex)

used for WM, W97M,
W2000M (Word); XM,
X97M, XF, X97F, X2000M,
(Excel); PPT, PP97M
(Powerpoint); O97M,
O2000M (Office), P98M
(Project) and others

Macro viruses (MS
JET-DB fomat)

Extensions: MD?; Header: 01 00 00 00
(hex) or: 00 01 00 00 (hex) and
“Standard Jet DB”

used for A2M, AM, A97M
(Access)

Macro viruses (old) Extensions: DO?; Header: DB A5 (hex) used for W2M (Word 2.x)
File viruses and
malware (DOS,
Windows 16- and
32 bit, OS/2)

Extensions: COM (no special header,
but often E9 or EB at the beginning),
EXE, DLL or VXD (“MZ” or “ZM”), SYS
(mostly FF FF FF FF (hex))

first or last letter of the file
extension often changed for
security reasons to get non-
executable extensions

Linux file viruses
and malware

Extensions: LNX or none, Header: 7F
45 4C 46 (hex)

ELF binary file format

Java viruses,
malware and jokes

Extensions: CLA or Class; Header: CA
FE BA BE (hex)

OS independent file viruses;
mostly jokes, not viruses

Boot images (from
boot viruses)

Extensions: IMG, BOO or MBR (no
Header, often EB, sometimes EA or
E9); size often multiply of 512 bytes

no exact recognition
possible (for anti-virus
programs, too!)

Script-based
viruses and
malware (BAT)

Extensions: BAT; Header: none, but
commands like “echo” can be found

some viruses uses the
DEBUG program to create
files: hexadecimal scripts
can be found very often

Script-based
viruses and worms
(VBS / JS alone or
in HTML files)

Extensions: JS or VBS (no header, but
the instruction “CreateObject” can be
found); embedded in HTML files: HTM,
HTML or SHTML (Header: “<html>” at
the beginning)

in HTML files the script parts
start with “<Script
Language="Name">“ , where
Name is “VBS”, “VBScript”
or “ JavaScript”

mIRC worms Extensions: INI; Header: “ [script]” ,
usually commands like “dcc send $nick
script.ini” can be found

usual filename is
SCRIPT.INI, but often
renamed (duplicate names)

Text files and
others (non-viral)

Extensions: TXT, ME, DOC, ASM, A86,
DEB, MAC, BAS… (no special header),
but mostly contains only characters in
the range [10,13,20...7f] (hex)

files with descriptions,
source code, site addy’s etc.

Graphic files (non-
viral)

Extensions: BMP (Header: “BM”), GIF
(Header: “GIF8”), JPG, WMF etc.

screenshots from the virus’
payload etc.

Sound files (non-
viral)

Extensions: WAV (Header: “RIFF”),
MID, MOD (no special header), MP3
(FF FB (hex))

Intros, sound
demonstrations or things for
the virus payload

Table 1: Short overview over most common file formats and their identification.

EICAR 2000 Best Paper Proceedings

228

Sorting and cleaning the whole collection

The files should be renamed to executable extensions or the extensions that these kinds
of viruses should have. If this is too dangerous for the tester (one execution of a virus
could destroy the work of the complete sorting process), all files that could be executed by
accident should be renamed to unusual extensions. The anti-virus programs used to scan
and sort the viruses have to be re-configured so that they are able to search for these
kinds of viruses, too. Usually, an option like “scan all files” does this work better than
adding all of the new extensions used to the program.

Now it is time to sort the pre-grouped files. The collection should be kept in different major
directories. The root directories could be named after the type of the viruses, like “Boot” ,
“File” , “Macro” or “Script” . If malware other than viruses and worms are tested, a directory
like “Other Malware” or simply “Malware” should be added and things like Trojan horses
and other things should be put here. For polymorphic samples of macro or file viruses, a
special root directory like “Poly” is recommended. Now the files could be sorted to the
different directories, using the following scheme.

It is hard to identify and sort out boot images and copy them into special directories. It is
very important to keep in mind that some anti-virus programs are not designed to find boot
viruses in files, and should not be penalized for not finding boot viruses in files, because
boot viruses cannot be found in files and multipartite viruses use different parts for files
and boot sectors. Often special parameters exist to enable this feature and/or the files
must have a special extension (like BOO or IMG). It should be noted, that many of the
image files only contain one part of the virus, but the rest (that is usually on an other track
or on some special tracks of the disk) are not included here, so the viruses will not run if
the images are written back to disk. Therefore, it could be impossible to infect a machine
to create samples on different disc. The replication of boot viruses will not be discussed in
this paper.

There is only one way to scan for image files and sort them by using the report files from
the anti-virus programs or from individual analyses. Surely, some scanners should be used
that are known to identify viruses. However, more than one or two scanners are
recommended to ensure that only viruses are added. There is usually the problem that
three scanners have four different names for the files infected by the same virus. If a virus
is only found by one scanner, it could be a new variant, a damaged sample, or maybe a
false positive. Such file needs further analysis and a review to determine if they replicate
or not. One scanner (e.g. the one that has the most different virus names in the virus list)
should be chosen to order the collection by the names the program gives as outputs. This
helps to keep one directory for the same virus variant and avoids having the same virus
three times with different names in different directories. If this special scanner is not sure
or does not find a virus, the second should be chosen and these samples should be sorted
in a special directory (in the same database part) so that the collection is still sorted after
the first scanner and there a sub-collection that is sorted after the second one. The same
can be done with the third, fourth, etc., scanner.

There are also automatic tools to sort viruses this way, for example Virus Collector's
Database by David Smith, VirSort by Christian Julius or ZooSort. Gerald Scheidl from

EICAR 2000 Best Paper Proceedings

229

Ikarus Software in Austria developed a sorter tool called Virus Collection Tool (VCT) that
uses more scanners to classify and sort viruses automatically. For this, it looks at the
detection of most scanners outputs and sorts it to this directory (case-sensitive).

By sorting a collection manually, some things could be done better. For example, if there is
a pre-sorted directory with 100 samples of one virus, but most scanners only detect 98
correctly, the other ones report different or unknown variants of it. This could mean that the
samples are damaged or somewhat destroyed. Furthermore, it could be the case that it is
really the same working variant, but the anti-virus program developers have overlooked a
byte that is not static but rather variable and they identify the virus as a new variant. Such
things can only be noticed by sorting the files manually. But all-in-all, it is impossible to
make a nearly perfect collection, because there are too many variables and anti-virus
research is a soft science.

Another point is that there are varying opinions by different researchers to define when a
virus is a variant or not. Some say, one bit changed in an unimportant routine is enough;
others say that they are different only if there are differences in the run-time behavior like
changed infection or trigger conditions. So it is not a good idea to test the programs if they
can identify all viruses like the tester wishes. This means, in every separated directory the
anti-virus program should find one and the same virus and this virus should be identified
nowhere else. It is more important that the program is able to find the viruses and clean
them the correct way than if the programs make distinctions in the identification, because
of speed reasons or because there is no need to be so exact. However, the results of such
a test only show the differences between the tested products against the reference
products that have been used to sort and build-up the collection.

To continue the sorting process, a closer look at macro viruses will be taken. Products that
can identify macro viruses on an exact basis should be chosen here. There are the ones
with the best variant detection (the tester has to check this) and mostly they are using the
CARO naming convention for this (see Table 1).

These prefixes should be used as directory names to sort the collection. For example, the
virus WM/Concept.A should be put in the directory “Macro/WM/Concept/A” because it is a
Word ’95 macro virus (see table 2). A little problem could by caused by the suffixes that
are used for different language versions of Word if the viruses can only work on these
special version. An example is WM/Macaroni.A:De - the problem is that a “ :” cannot be
used in a directory name, but it can be substituted by an “_” or an other character, so the
directory name could be “Macro/WM/Macaroni/A_De” . If there are more than 26 known
variants of a virus, a second letter have to be used for this virus variant (or more, if there
are much more variants). An example is WM/CAP.GD which is the 26 * ”G” (=7th character
of the alphabet) + ”D” (=4th character of the alphabet) = 186th variant of the CAP macro
virus.

If there are new or modified variants of macro viruses in rather old files found by recent
versions of the anti-virus program, it often means that the files do not contain a working
virus or that the files could be damaged. A further look should be made of these files, like
trying to replicate the virus. Some programs are able to find such trash files (like a bad

EICAR 2000 Best Paper Proceedings

230

cleaned, no longer infected document) and report them correctly so that they can be
copied to the non-malware directory.

File viruses are usually the largest group of viruses, even if they are not found very often in
the wild compared with macro and boot viruses (Wildlist 1999). Sorting them requires the
most effort compared to other types of viruses. File viruses can be grouped into DOS
(without any prefix), Windows 16-bit (W16 or W31 prefix), Windows 32-bit (W95, W98,
W9x, WNT or W32 prefix), OS/2 (OS2 or no prefix), Linux (Linux, Lnx or Lx prefix) and
Java viruses (Java or Jv prefix). The prefixes could also be “Win” instead of the “W” only.
While the prefixes W16 and W31 have the same meaning, the 32-bit windows viruses do
not. W95 stands for virus that infects only the ’95 platform and W98 means the same to
Windows ’98. Win9x means ‘95 and ’98, WNT are viruses that only run under NT and W32
viruses should run under all windows platforms. These prefixes are quite tricky, because
other programs use other prefixes, but they have the same meaning. Therefore, it is not a
bad idea to group Windows-based viruses only in two groups that have big differences in
the file structure and detection - 16 bit and 32 bit.

In each group it is recommended to keep the number of subdirectories as small as
possible by sorting the viruses to directories which contain the first letter of the virus only
and then the subdirectory contains all viruses that start with this letter. An example is
“File/Dos/A/AntiCAD/4096/A” for the dos file virus AntiCAD in the variant with a length of
4096 bytes, type A (see table 2). Some viruses start with a number or with an “_” . These
samples can be copied to one directory, because they are only a few. A directory named
“0” which contains all of these viruses would be a good idea. Some scanners have
problems with large directory trees that can be found in virus collections only. Further, it is
easier to restart scanners on these directories if they crash or have other problems.

Script-based malware can be divided into BAT (prefix BAT), HTML/VBS (prefixes HTML
and VBS) viruses and mIRC (prefixes mIRC or IRC) worms. Some anti-virus programs are
still unable to find all this kind of malware or parts of it. VBS and HTML viruses are very
similar, because HTML viruses only contain VBS parts. HTML itself does not contain any
harmful commands. Therefore, they could be sorted to the same group or not - this is a
decision of the tester.

BAT viruses require their own group, because there are no similarities to other kinds of
viruses. Most BAT viruses are very primitive and do not work correctly. Therefore, the
replication of this kind of viruses is not discussed in the following part. Often, only the first
generation of these viruses run, but the second one will fail to replicate. Therefore, they
are mostly intended viruses or can be grouped into groups like Trojan horses, which is a
subset of the “other malware” part.

mIRC worms are a special problem - they cannot be replicated to get new samples,
because a copy of a worm is normally the same file. They can only be observed if they
spread. For this reason, an IRC server has to be set up - there is no other way to test
whether they spread or not. An existing IRC server could be used, but normally all people
would be infected when downloading the script that the worm offers. Because of this, it is a
better way to sort this kind of malware only by the names of anti-virus programs. But most
of them only use a heuristic based upon a small scan string (see the pre-sorting part of this

EICAR 2000 Best Paper Proceedings

231

paper) and often the files are damaged a little bit, because the end of the files are missing.
Therefore, it is not an easy task to sort them, but very few programs use a CRC over the
whole script file to identify the worm exactly.

Virus and
malware
collection

Boot

File DOS

Java

0

A Ambulance

Anthrax

AntiCAD 2454

...

4096 A

B

C

...

files...

files...

files...

Macro

...

...

W97M

WM 0

A

C

...

Concept A

B

...

files...

files...

B

...

...

...

...

...

...

...

Z

...

...

...

...

...

...

Type Environment

Directory structure
First
letter

Virus name Length Variant

Table 2: Suggestion for sorting the virus collection

The last virus-related category is Trojan horses, backdoors and other malware that harm
the system intentionally. It is difficult to group them in categories exactly, so the name
“other malware” should be applied. This includes first generation (germ) files from viruses
which do not run as expected, but can destroy data because the trigger and damage
function is still active. A system crash is usually also a reason to detect the program. If the
germs run and replicate well and the form of the virus is the same (e.g. the same type of
infected files and entry point jumps) they should be copied into the respective collection
like File/DOS to the other files. Very often germs can be found in a bad collection because
the collector does not replicate the files. They are dangerous, because the typical user will
only get such files if he downloads “something” and it is hard to clean the system if the
germ cannot be found and only the infections can be cleaned each time. Virus droppers

EICAR 2000 Best Paper Proceedings

232

should be sorted in the “other malware” category, too. This includes boot virus droppers
that write an image of a boot virus to a floppy or hard disc. Some programs have a special
option to enable the feature to detect Backdoors like BackOrifice or SubSeven. The reason
for this is that some backdoors like NetBus Pro are distributed as commercial or
shareware programs and the authors do not like their work to be detected as malicious
code (Hansen 1999). There are some companies that use such backdoors as a remote
access tool and even Microsoft has a program called SMS that can be used as backdoor
(Rötzer 1999).

Last but not least, the false positive collection should be prepared using executable files
and documents from the network server of the magazine or a company, together with files
that can be found on CD, disks etc. Because on some CD’s of magazines there are
viruses, the tester should keep in mind to check this and only add really “good” programs.
Joke programs should not be included, but it is an interesting idea to include innocent files
found in virus collections to check if the anti-virus researcher works carefully enough.
Some anti-virus programs have got false positives in graphic files like BMP or GIF, so files
of this type should be in the collection, too.

Replicating Samples

There are some ways to replicate viruses (semi-) automatically. (Helenius 1998) used a
network server, one monitoring PC and one victim PC for replicating viruses fully
automatically. For this, the hardware had to be modified. There are other solutions that
only require one PC, like an Unix or Windows NT machine with a restricted DOS
(emulation) task or a complete system emulator like VMware (VMware 1999). The viruses
can spread under these conditions and, if there are enough replicated samples, the task
can simply be closed to deactivate the viruses from running.

The basic scheme of a DOS file virus replication process is always the same. The victim
PC is initialized by booting from a write-protected disk that contains the memory and
network drivers, a RAM disk driver, a hard disc simulator, a goat file program and some
BAT jobs to automate this process, including a reboot sequence.

A goat program is used to create small or large, different or similar COM, EXE or SYS files
that viruses can infect. Such files usually contain only a hello-world-like routine to display a
message and become incarnated. The rest of the file contains only 00 (hex), 90 (hex)
bytes or some virus samples could be generated containing random bytes only.

Goat programs are useful to create a large set of files with the required attribute for the
special virus. Often viruses do not replicate, because there are no viruses, but an intended
or germs variant or Trojan horses. Often they do not run, because they require a special
environment, such as a special processor, graphics card, memory size, date or other
operating systems or software. For a tester, it is hard to analyze the virus’ special
requirements to make the virus replicate. It might be that the description of anti-virus
program developers could help to solve this problem. However, not only the goat files
should be infected, but normal files like command.com or the network driver should be
infected or goat programs itself could be kept for further analysis. Maybe some files are
not infected correctly, and therefore, they should carefully be checked to see if they run

EICAR 2000 Best Paper Proceedings

233

and if they can infect more files (recursive further infections as a sign that it is really a
correct infected file that contains a working virus).

Replication of windows-based viruses is a special problem. Windows cannot be started
from a floppy disc or network, so a complete windows installation has to be prepared first
on a real hard disc. After this, Drive Image by PowerQuest or Norton Ghost by Symantec
should copy a 1:1 image to another drive of this disc or to the network. Next, the virus can
be started manually and if the virus becomes memory resident like W95/CIH, it is enough
to start some programs to infect them. Usually in the Windows directory, there are enough
programs that could be started and infected. In case of W95/CIH, it is sufficient to read all
the files once by opening the Explorer to the Windows directory or copy all files to the NUL
device, because it infects all files while opening. Some viruses like W95/Marburg are not
memory-resident, but they are using fast infector methods that look for some files to infect
at each start of an infected file. After some time of doing this, all of the files should be
copied to a network directory and the image of the disc should be written back. Only then
can the the next virus be tested.

The same mechanism can be used to replicate the different types of macro viruses, but
only one Office version should be installed at the same time and only macro viruses for
that t version should be tested (e.g., WM viruses and Office 6.0 or ’95; X97M viruses and
Office ’97). This prevents the risk of upconverted viruses that some people classify as
creating new viruses, for example a Word ‘95 WordBasic virus (WM) that upconverts to a
VBA Word ’97 (W97M) virus, which can look different after every upconversion process
(Bontchev 1999). However, this view is subjective and this problem can be argued in the
way, that upconversions are not “new viruses” ; that they happen every day in real user
environments. This is a possible danger for them and there could be the need to test the
detection of these upconversions. For this, the virus has to be tested to determine, if the
upcoverted virus is still able to spread or if it is another type of malicious code that can still
harm the user. For the replication process, an infected file should be opened in the Office
application the virus has been written for and the tester should create new files, write
something into them and then close them. Again and again, the infected file should be
opened, saved and closed. Most viruses that use auto-open macros or macros that
replace standard functions of the application should have now infected some of the goat
files the user has created and saved. After each replication, the image has to be restored
to avoid having more than one virus activated at one time where a mix-up of them could
happen.

An interesting topic of virus replication is to create a collection of different looking samples
of polymorphic file viruses. For this, more than one PC should be used and also the scripts
should change some conditions like the date and time of the machine. Some viruses only
change a major part of their polymorphic start program after rebooting with a new date.
Other viruses check the date before each infection and change the code if a new date has
been found; others change their complete code on each infection. Such conditions have to
be analyzed before such viruses can be used to create a polymorphic test set. Such test
sets should contain at least 1000 samples, but 10,000 or more samples are more useful to
get information on the ability of the program. Of course, it is important to check if the
generated files still run. Some scanners should be run over the collection and if they all (or

EICAR 2000 Best Paper Proceedings

234

nearly all) fail to identify the same files, these ones are likely to contain a damaged variant,
which should be tested.

Furthermore, a test set containing only replicated ITW viruses should be generated.
Grouped in different categories like “File” , “Boot” and “Macro” (or more exactly), it should
be prepared using information that can be found in the current (Wildlist 1999). It is not
always easy to get the correct virus because different scanners use different names and
the Wildlist uses one of the names reported, so log files from other scanners should help
to find the right virus from the list and the samples can be put in the collection. It is very
important that the tester puts only the exact variant of this virus in the collection. If this
variant is not available, this virus has to be left out and no other variant should be put in
the collection instead. Additionally, for the ITW collection the same number (e.g. 1 or 10) of
files should be used for every virus so that the tester gets comparable results.

Preparing test files for compressed and archived files

Usually, scanners should also be tested regarding their ability to detect viruses in
compressed and archived files. To prepare a test set of runtime compressed files, it should
be noted that only file viruses can by tested this way. However, not all types of file viruses
can be used for this test, for example, slack space, EXE header or zero hunter viruses,
which searches for some free space at the beginning or all over the file, to store the virus
code here, cannot be used. Usually, the compression program doesn’t care about these
blocks and the files will be destroyed and because of this, most anti-virus programs will not
find anything. An example for this is Zero_Hunter or W95/CIH. For DOS file viruses,
programs like PkLite, Diet, ICE, WWPack, LzExe and UPX can be used. The files will
simply be processed by the packers. For Windows file viruses, programs like Petite,
WWPack32, and UPX, which simply have to be executed to prepare this part of the test.
However, each compressor should be tested on more than one virus infection and for
different file types like COM (DOS viruses only) and EXE. It should be noted, that not all
virus infected files can be compressed. This includes files which are too short and most
infected Win32 files, because of the complex internal structures. However, worms like
Explore_Zip or Happy99/Ska and other malicious software, like backdoors can be
compressed successfully and used for this test.

If the ability of the products to detect viruses within archives should be tested, all types of
viruses can be used, except boot viruses (in image files), of course. It is a good idea to
include only one virus in each archive and some clean files around (before and after the
infected file) them and to prepare some archives with subdirectories where the infected file
can be found. This is, because some scanners only check the first files or are unable to
scan subdirectories in the archive. Others do a “dumb” scan over some parts of the
archives and too short files like the EICAR test file cannot be compressed and could be
found by accident. There are many packers available, like ZIP, CAB, ARJ, LHA, RAR and
ACE. It should be tested if the program is able to scan the archives recursively and if the
scanner can only process one packer (example: ARJ à ARJ à viral program) at one time
or if it can handle more (example: ZIP à CAB à viral program). How deep this process is
to go is another issue, but it is unfeasible to test more than 10 iterations or all possible
orders because their number grows very fast. Another test could be the detection of run-
time compressed files in such archives and if the scanner is able to handle it recursively.

EICAR 2000 Best Paper Proceedings

235

Of course, the detection of self-extracting SFX archives should be tested, too, if such an
option is available in the compression program.

Preparing test files for macro viruses

OLE/COM (Object Linking and Embedding / Compound Object Model) is a powerful end-
user tool to keep many objects into one file with an own file system. Many programs, like
most programs of the Microsoft Office suite uses it and the abilities of scanners to check
such files correctly should be tested. For example, if a scanner is able to find a linked or
embedded sub-document even if linking and embedding is applied over several levels.
Furthermore, Word documents can be saved as native RTF files. This removes macro
viruses if they do not block the transformation. However, embedded files and other objects
are still saved in an hex-like ASCII format and some scanners could fail to find the
embedded viruses, even if they can still activate -easily.

Another macro-virus related test should check whether or not the user macros are
removed during a disinfection of a macro virus on different applications. People can get
very angry if the programs simply remove the user macros and viral macros, because they
can be very important to them. This test can be done for Office ’95 and Office ’97 files,
where the user macros can be some simple comments and a message box. Since some
macro viruses like WM/CAP remove user macros, it is necessary to check the documents
after infecting to see if the user macros still exist and run.

Word and Excel ’95 files can be saved encrypted, but the encryption is rather weak,
because the programs only use a 16-byte XOR key depending on the user’s password. It
is easy to find the key using a known plain-text attack on these files, because there are
some strings of the application which can be found every time in encrypted areas. Macros
are encrypted completely by this function, too. Some viruses also add a password to
saved files as a part of their damaging function. This should be tested as well to check if
the program is still able to find the virus inside the password-protected file and clean it by
removing the password or not (the best solution would be that the program lets the user
decide if he or she wants to remove the password or not). Office ’97 uses a much stronger
encryption method (RC4, 40 bit) that cannot be broken easily. Macros are no longer
included in the encrypted areas, and therefore, they can be scanned. However, those files
cannot be cleaned completely, because a very important part (the 0/1Table) is still
encrypted (Marx 1999c) and cannot be changed, so the macros can only be disabled by
overwriting them with a string of the same length and not by removing them.

Office 2000 has the capability to allow users to sign their macros digitally to prevent the
run of viral macros (Marx 1999a, b; Ducklin 1999; Chi 1999). Since this feature is rather
badly implemented, macro viruses can be signed easily, too, maybe together with user
macros. Therefore, it should be tested, if the scanners find the viruses, clean the files
correctly leaving the user macros intact, and removes the digital signature so that Office
does not report an error message based of an incorrect checksum.

Another feature that should be tested is the detection of viruses in *.MSO files. These files
are generated in Office if the current document contains macros and the file has been
saved as HTML file in a special subdirectory. In this file, Office will store all macros and

EICAR 2000 Best Paper Proceedings

236

some other information in a new, special format in compressed form. The detection and
correct disinfection of macro viruses that has been saved in this format should be tested
because more and more users use Office 2000.

There are more possibilities to create special test files for the scanners (not only for macro
viruses), but this should be enough for this paper. A good tester could find more
possibilities what could be tested - but the tests should be relevant for the user.

Documentation of the collection

It is very important to make documentation about the viruses in the collection and publish it
in a digital form, because it makes no sense to print it in the magazine if it is quite large.
This documentation can be done using a script that counts all files from each directory of
the sorted virus collection and writes them to a report file with the virus name (which can
be get from the directory name).

Report files from all scanners and the options used in the test are part of the
documentation of this collection, too, but this list is only available after the test. A report
about what and how a test is made should also be given to the participating companies.

Last but not least, the idea should be discussed to give the collection used for the test to
all virus companies who ask for it, but dangerous files should not be given to developers of
programs that are rather poor in the competition or do not have a high reputation. This
makes the test much more transparent, but only a few samples should be given away (e.g.
one sample per virus) so the developers cannot cheat for the next test, because they could
only include CRC sums to detect viruses they cannot find instead of using the usual scan
process.

Balancing the Weights for Different Categories

It is not easy to decide what is more important - the detection of macro viruses, the
cleansing of file viruses or the fast, automatic update processes. For this reason, different
types of user groups should be considered, for example, an Internet user, an “offliner” or
an administrator in a small company. The first one can update the program as often as he
wishes and frequently gets e-mails - maybe with attached word files. The second one
usually gets new programs and data on discs and the last one wishes quick, automatic
distribution of new updates to all clients etc. Because of this, the tester should use different
weights for different types of users. An “onliner” usually gets macro viruses or worms more
often than file or boot viruses. For this kind of user, macro viruses should have a higher
weight. For non-Internet users, the detection of boot viruses is much more interesting. In
this case, the tester should decide that online updates do not help the “offliner” and they
are useless for him. The total weight for virus-related categories should not exceed 50%,
because there are too many other things that make programs good or bad, like
management features or update strategies. Our experience shows that there is no
correlation between software quality and virus detection quality. Therefore, the weight of
virus-related categories should not be too large (even if a good score is a precondition for
choosing a product), because otherwise general software quality features might not be
represented adequately. Another idea is that every reader can make his own decision

EICAR 2000 Best Paper Proceedings

237

about the weights for the categories, but this can only be done for reviews where the
readers have sufficient knowledge about this topic.

non-ITW malware

Boot viruses
(10%)

File viruses
(20%)

Macro viruses
(20%)

Script malware
(20%)

Polymorphic
viruses
(20%)

other testsets
(10%)

 - DOS (35%)
 - Win32 (32%)
 - Win16 (30%)
 - Java (1%)
 - Linux (1%)
 - OS/2 (1%)

 - WM (25%)
 - X97M (25%)
 - W97M (20%)
 - XM (20%)
 - XF (8%)
 - AM/A97M (1%)
 - PPT/P97M (1%)

 - mIRC (30%)
 - VBS / JS (30%)
 - HTML (30%)
 - BAT (10%)

 - Macro (50%)
 - File/DOS (50%)

Table 3: An example of weights for non-ITW viruses

For the virus-related parts, it should be mentioned that ITW viruses are much more
important than all zoo viruses together. The weight should be much higher for ITW viruses
than for non-ITW ones, some say 60% should be used (Marx & Günther 1999), other say
at least 95% should be the weight, but a weight in this range is sufficient. Furthermore, a
detection score difference of 1% between the products on zoo viruses says nothing about
the quality of the anti-virus programs, because this kind of viruses is not very interesting,
because users will not encounter them. On the other hand, 1% difference in detection of
ITW viruses is important.

For the prevalence between the viruses, the (Wildlist 1999) can be used, because the
number of files that exists for different categories of viruses is not important. There are
more file infectors than macro viruses, although macro viruses are much more important. It
contains viruses that are reported to virus experts and corporate reporters from different
companies around the world (Coursen 1998). However, this does not mean, that all
common viruses will be reported, but most of them. In the ITW test set, three lists are
available:

- the “Wildlist” (viruses which were reported by more than just one person),

- the “Supplemental List” (viruses only one person have reported) and

- the “Other List” (other malware besides viruses, like Trojan horses and Backdoors).

EICAR 2000 Best Paper Proceedings

238

All three lists could be used to get correct results in this field. However, an ITW test set
according to the Wildlist contains only the first part of it. This is, because viruses on the
supplemental list come on and off the list very fast, so there is a definition problem if there
are ITW viruses (which can be found for a longer period of time) or not. Second, the “Other
List” contains non-viral malware only. There are several definitions of malware available,
but there is no strict definition, if the programs listed here are malware or not. For other
virus test sets both lists can be used, too, with a lower weight, of course.

While finding viruses increase the program’s total score, occurrences of false positives and
files damaged during repair should decrease it. For example, every false positive will
decrease the total detection score by 0,1 to 1%, with a maximum of 10%.

An example of a weight for the group of online users for the non-ITW viruses according to
(Marx & Günther 1999) can be found in table 3.

Even if some categories do not have a heavy weight, they should be noted if they are
tested. Some people are interested in those special areas, for example, if a company has
problems with XF viruses, it wouldn’t use a program which is unable to find such kind of
viruses. Other virus types like Perl, ActiveX controls or a special group of polymorphic
Win32 and script viruses were not tested this time, but such categories surely become
important in future tests.

Part II - Evaluation and Testing the Anti-Virus Programs

In practise, it is impossible to test all features and aspects of software. Furthermore, only
snapshots of the product life cycle can be reviewed and tested. Software is complex and
unsteady, it is very easy to change it and minor changes might cause a large effect (Heisel
1998). If only a small section of the product life cycle is tested, errors and bugs can simply
be overrated if they only appear in the tested version. However, all programs have to be
tested in the same (hardware and software) environment with the same requirements,
because otherwise they are not comparable.

If something unexpected happens, e.g., the program cannot be installed, if it is completely
unable to scan for viruses, or is extremely slow, the programmers should be contacted. In
this case, it is possible that wrong settings were used to test the programs. There are
some switches causing huge internal changes in the program, e.g. an activated heuristic.
Furthermore, unknown bugs can also cause such problems. Sometimes bugs can be a
little bit curious, e.g., if the programmers only use 16-bit-INTEGER variables, the number
of scanned files or found viruses switches to zero if it exceeds 65535. Even if the tester is
able to get the correct results in spite of such small mistakes, the programmers should be
informed about them.

General Product Evaluation

In the field of software engineering, two common strategies for software testing are known:
black box and white box tests (Pomberger 1996, page 151ff.). In a black (exterior) box test

EICAR 2000 Best Paper Proceedings

239

the input/output behavior is tested without knowledge about the internal structure of the
program works. A white (interior) box test is based on knowledge about the internal
structure of the program.

Black box tests and system test strategies

Since neither source codes nor any other internal information is available about anti-virus
programs, only black box tests can be applied. The input of such tests is a file that is
infected by a virus. Then, the program has to decide what kind of code it is, the output will
be displayed on the screen or in an report file for further analysis and the detection score
may be increased.

It is not the objective of an anti-virus comparison test to find as many bugs as possible
(this is a task of the software producer who hopefully found and fixed most of them), but at
least it should show that the program runs stably and efficiently in most use cases. For this
reason, the tester should make sure r the following software quality features are reviewed
according to (Wallmüller 1990, pp. 194f.):

- The program package is complete, if it contains anti-virus functions for finding viruses
on-access, on-demand, in archives and is able to clean them. Tools for global
administration of this program or automatic update distribution should be included, too.

- A volume (mass) test on many different files should be done (if they contain viruses or
not). If files are open (like mail or user databases) or closed, it can be analyzed
whether the program is stable on all scanned files even if there are some corrupted
files (for example, damaged OLE structures in Office documents) or unexpected
structures like (Raiu 1999), because they can get real world problems very fast.
Furthermore, the behavior of the program in case of a problem should be tested, e.g., if
the program triggers a warning message or a blue screen, because it crashed or halted
the system. This includes the ability of the program to scan deep directory trees and
the ability to handle large report files without problems.

- The system should be tested under heavy load over an extended period. A typical test
scenario is a file server where the anti-virus program is running and hundreds of PCs
are simultaneously accessing the server or a system where many applications and
tasks are running and require a large amount of system resources.

- User-friendliness includes that the program gives enough and good feedback in case of
errors, interface and status monitor are designed in a way that all-important features
can easily be viewed at the same time and an online-help exists.

- The security of the program is another aspect. It should be impossible for non-
administrators to change settings, delete or manipulate program’s data and to uninstall
the program. Obviously, the program must not change important security settings of the
system automatically and the software may not contain bugs that cause root exploits
(the program has usually administrator rights to be able for scanning all files) or other
dangerous scenarios.

EICAR 2000 Best Paper Proceedings

240

- The program’s efficiency is given, if response times are acceptable under usual and
higher than usual workload.

- It has to be tested, if the program can be adapted to user requirements in different use
cases. This includes all tasks to be performed if viruses or other malware were found.

- The anti-virus program has to be compatible with other versions of itself, the operating
system and application programs. This includes the report file format and the signature
data files that have to be supported by all versions, the documentation of updates and
information policy. If something is not compatible (like new signatures and an old
engine version or old signatures with a new engine), it should clearly be documented
and an error message has to be displayed in such a case.

- The documentation of the program should be complete, describing all-important facts
and be easy to understand. If the documentation is online available online or on CD-
ROM, at least the (de-)installation and all emergency situations should be available in a
printed version, because the online documentation cannot be read in such cases.

- The software package should include a service level agreement including all
regulations regarding hotline support, updates, upgrades and online services. If the
support shall be tested, it is important to call the hotline anonymous and write e-mail
from a special account. Questions could be according special viruses, functions,
settings etc., however, the difficulty should be the same for all producers according a
special question. Another idea is, to send a fresh replicated sample from a new or
unknown virus to the vendors (using quarantine functions or automatic sample sending
features) and let it analyze by them. The response time and the quality (Does it function
on all samples? Is the disinfection routine correct?) could be tested here.

- Does the installation and deinstallation routine of the program uses an assistant or
other functions to make the life easier, does it require a reboot or can the software be
used without it. A deinstallation should remove all shell extensions (the context menu
that will be opened by a right-mouse click in the explorer and other programs), all files
and added or changed registry keys.

Bugs in operating systems - the program is not always wrong

The operating system or device drivers cause some larger problems. In particular, if DOS
programs are tested in DOS boxes of Windows environments, timing or file find-/open-
/close problems might cause unexpected crashes or other non-deterministic behavior
(Brunnstein & others 1999). Because of this, the programs have to be tested only in the
environments for which they have been written. Furthermore, minor release changes of the
operating system are relevant for programmers. Therefore, programs often include many
CASE instructions for all existing different versions. The same is necessary due to files
formats. For example, even minor changes from Office ’97 to 2000 cause much trouble,
because these changes hinder the correct disinfections. Therefore, anti-virus programs
have to be changed even if there are no new viruses.

EICAR 2000 Best Paper Proceedings

241

Virus-Related Tests

Anti-virus programs are available for many different operating systems and hardware
platforms. A relevant index number for the comparison of their behavior in different
environments is the detection score, even if most parts of the programs are only compiled
using other compilers and many instances of #defines’s in C/C++. However, this is
possible in 32 bit platforms like Windows NT or Linux only. 16 bit platforms like DOS
(without an 32 bit extender) usually have a different and/or older engine and other results,
but finally they should nearly reach the detection score of their 32 bit companions,
including macro viruses. For the end-user review, it should be sufficient to use the 32 bit
platform products only.

Test of on-demand scanners

Today, DOS scanners can only be found on emergency boot disks or as undocumented
parts of the program package. They are important in case of emergency scenarios, which
will be described later. Their usage is similar to the Windows command line scanners of
the program, but the handling is different from the GUI versions, of course, because the
GUI versions usually cannot be started with command line parameters. They have to be
configured using INI files or options that can be chosen in the GUI. If the tester can only
review one version, it should be the Windows version and not the DOS one, because the
end-user would usually use the Windows-based engine only.

It should be noted that some scanners are able to scan into all types of files according to
their extension. Unfortunately, if the collection contains renamed files as suggested - to
hinder execution by accident - some programs do not use heuristic analyses to scan for
unknown viruses in such files. For this, the files have to be renamed to executable
extensions. After the test, they could be renamed to the original names. Options like scan
archived files should be activated - some scanners will need it to scan into PPT files,
because of the complex structure.

Only a report file should be used to get the final detection score for the program in different
test-sets. It is a problem if the program displays wrong data on the screen, because it has
scanned more files than the tester wishes such as repeated scans of the MBR, boot
sector, and root directory of drive C. Another example is, if the program has more to
display than just the number of infected files, such as the number of possibly infected files
or errors. The next example is, if the program crashes on large databases, the tester does
not need to summarize the scores all different directories, but an automatic script parsing
the log files can do this automatically and more exactly. Such scripts are not easy to write,
because all scanners use a different format for writing data to the log files. For example,
most scanners use one line for one file, but others use much more lines for exactly the
same data. An other group of software uses different schemes of counting viruses. For
example, a program that uses two virus-detection engines may count every virus twice if
both engines have found a virus or a program may count every virus signature found as a
virus even if it has been found it in the same file. Another problem occurs in files that can
contain another objects, like packed files (ARJ, ZIP) and OLE/COM files. Some scanners
only count the archives, but not the objects or files in the archives, other count only the

EICAR 2000 Best Paper Proceedings

242

objects, but not the archived files etc. In all of these cases, the report file is very important
to get the correct detection score.

Some programs still cheat to get higher scores in the tests using “ features” some
companies have documented which others do not have. Usually after some ten or hundred
(different) infected files, the scanner will increase the heuristics or adjust the detection by
switching the engine in a more paranoid mode. They are described as features to detect
more viruses on a heavily infected system - a system that would not be found in the real
world, because no system can be infected by so many viruses. More likely it has been
established that some testers use the wrong options or settings (Klotz 1997). However, the
tester can use a strong weapon against this if all false positives are copied into special
directories of the virus collections (Brunnstein & others 1999) or directly to the viral
directories using special file names, and automatic scripts processing the report files filter
them out. The program has to scan for both types of files and if it cheats, the detection
score and the false positive score will be increased together and finally the program will
loose some points.

The only category of viruses causing trouble in on-demand scanning is boot viruses. To
test anti-virus programs, tools like SimBoot (Gryaznov 1994) - which usually run under
plain DOS only - can be used or all image files in the test set can be written back to disc
and the scanner can scan one after another. Neither variation is satisfying, because no
real viruses are used for this, and the performance measurement of an antivirus product
on simulated viruses is not a reliable measurement of the product’s real ability. For
example, most anti-virus programs are too intelligent for this, so they do not search for a
boot virus on a 3,5” disc that can only infect 5,25” discs, they are unable to use the
simulated disc, or they are searching for further information about the infection and not just
the boot sector. Anti-virus programmers know about that problem and most of them have
implemented algorithms to scan for boot viruses in image files. However, this ability does
not reflect the ability of the product to detect real viruses. Some require a special
extension; others have to be started with special options. Therefore, the tester has to look
carefully at the results and if they are too low the programmers should be contacted about
how to proceed.

All other categories can be scanned easily part by part. Mostly, crashes are the only
problem. They occur after a special directory size is reached, a large number of files are
scanned, the size of the report file grows too large, or a special virus that cannot be
analyzed further is scanned, or simply “ randomly” . After such a crash, the scanner has to
be restarted at the last directory scanned. For this situation, it is important that a new
report file is used so the old one cannot be overwritten anymore. After the test, there is the
need to check all scanners, if they really scanned all files and if not, they have to be
restarted on some directories. Automatic scripts could do much to help solve this problem
to get the path and names of the unscanned files, too.

On-access guard tests

Windows guards are mostly written as VXD files. Such virtual device drivers can only use
two methods to communicate with the user after a virus is found or a problem occurred:
they could display a “blue screen” or they could use a 16-bit window. If they use the first

EICAR 2000 Best Paper Proceedings

243

method, all other tasks are blocked and they can ask the user in text mode what should be
done. Unfortunately some graphic cards have problems with such switching from graphics
to text mode and back. The other possibility is to display a 16-bit window that prompts the
user for how to proceed but all other tasks are still running and the guard has to block the
action (e.g. file access) first. After this, it asks if this was OK and what to do now. Neither
method is not satisfying, but no other methods are known that could help solve this user-
prompt-for-action problem.

Boot viruses are problematic to test. Only discs with a real infection should be used for this
and it is very important that they are write-protected so that they cannot be overwritten by
the disinfection routine of the guard. The same write-protection applies to Windows,
because it automatically overwrites some bytes during the start of the boot sector every
time a new disc is read without write-protection and until now it is not clear why this is
done. Some programs have to be re-configured for this test, because they do not scan for
boot viruses. The reason is that while reading or writing to the boot sector of the disc, the
virus cannot become active. This only happens while booting from an infected disc or by a
boot virus dropper. Other programs report the infection without problems; some only scan
for viruses on a disc while restarting a PC. Therefore, the tester should ensure that the test
is performed the right way and the different philosophies should be noted in the test report.

Other types of viruses are much easier to test with an on-access scanner installed. They
can simply be re-configured to delete detected viruses automatically while reading and
then the tester reads all files at one time. This can be done, for example, using “copy *.*
nul” or “ xcopy *.* nul /s” and to answer the appearing question with “ file” . After this, only
the viruses the program did not find are left over. Another suggestion is to use an option
like “ report only” while copying the files and to process the report file after it. Some on-
access scanners cannot be configured to process the files found automatically, so a user
has to answer the questions or an automatic system like in (Helinius 1998) has to be used.
Unfortunately, some scanners are not programmed well and they have timing problems
between their VXD and their display part. After a number of files or some time they loose
their protection - they still prompt the user for action, but they let the virus pass in each
case (Marx & Günther 1999). Of course, all these tests have to be prepared first, i.e., all
viruses to be tested should be copied from the network drive first to the local hard disc.

After testing to determine if the scanner is able to detect a virus in those files, it should be
tested to determine whether it is able to prevent its execution, too. For this testing, it is
better to only use files that on-access scanners are able to find in the test copy, because if
the scanner is unable to find the virus, it will infect the system and the machine has to be
reinstalled using DriveImage or Ghost which will cost some unnecessary time. Each virus
category should be tested to determine if they prevent the execution of a DOS- or
Windows based virus, on saving an infected attachment, or during a download. For macro
viruses, it should also be tested, if the on-access scanner is able to prevent the opening of
an infected document, like from the start in the Explorer or by File | Open. In case, the user
wishes to prevent the opening, Office programs try to open it up to three times and some
scanners warn the user three times instead of ignoring the other attempts and still block
them - the user only gets confused by this and a good anti-virus program should be able to
display the message only one time.

EICAR 2000 Best Paper Proceedings

244

A particular type of on-access scanners is also used for mail- and file-servers. They are
able to scan inside archive files like ZIP, but in the case of on-access scanners for clients,
it is an unnecessary feature, because such a virus cannot become active. But, of course,
an on-access scanner has to be able to detect viruses in runtime-compressed files, and
therefore, this should be tested. The problem is that most programs are unable to do it and
the system becomes infected and has to be restored. Such files can be tested using the
copy method, too. An additional test could be made for shared network resources - using a
machine with infected files and an installed guard and a machine without a guard. Now the
machine without the guard should not be able to access the infected files. Unfortunately,
some scanners do not hinder this action.

Some anti-virus programs contain an additional behavior blocker that should prevent the
execution of malicious code or the damage that could be caused by them (for example,
overwrite system sectors or delete important files). Some of them have a teach mode
where they learn what usual programs do and what they do not do. After this, they prevent
actions that are against the learned rules and prompt the user about what should be done.
There are no good test strategies known for this, because most of these projects are not
supported anymore or they are simply not behavior blockers by definition. Other
companies have integrated the on-access guard with the behavior blocker, so that it
cannot be tested separately.

Test of disinfection

The function to clean infected files was implemented as an emergency solution a long time
ago and is still maintained, because users keep asking for this feature, in spite of the fact
that the best solution would be to restore the files from backups. Unfortunately, macro
viruses have changed this, because the need for a disinfection routine has been multiplied
- most of the time only outdated backups of such files exists and they contains user data
and a virus at the same time. Some programs still rely on the backup/restore strategy
instead of cleaning file viruses, because it is always dangerous to restore a file if the
original state of it is unknown. In addition, the virus may have destroyed the victim.
However, for emergencies like the W95/CIH, disease killers are available separately, but
are not included in the main product.

It is very time consuming and not a good idea to test the disinfection of boot viruses,
because many replicated discs (or backup images) are needed for this procedure and after
the disinfection, the tester has to examine the floppy disc to determine if it is completely
readable. However, real hard drive infections are much harder to test, because the system
has to be infected for this, so this will be discussed later.

It is hard to decide whether a file is cleaned correctly or not. Mostly because the file is not
in the same state as before the infection, other strategies must be applied according to the
type of file. The files that are in the original form can be separated together with those that
could not be cleaned.

For file viruses, the cleaned files should be checked to ensure they still run correctly.
However, the tester usually only has infected goat files and these run correctly after the
test, because they do nothing or only print a text message and exit to DOS. Therefore, it is

EICAR 2000 Best Paper Proceedings

245

a better idea to determine the difference between the original, uninfected file and the
cleaned file. In some cases, reasons for a program’s inability to restore the original state
can be deduced. For example, some viruses do not save the complete header of the file or
its exact length. But such hypotheses require a lot of knowledge on the part of the tester
about the different file structures and viral behavior, so the execution test is easier to
apply. It should be noted that a single bit change is enough to prevent execution or the
program may still run but it crashes in an unexpected situation. This could be a problem if
the cleaned file is a complex program, because there is always the chance, that cleaning
mistakes might occur which were not detected.

Another point is, that some ITW viruses do not run under Windows and cannot be cleaned
under Windows, this includes DIR-II and other directory viruses, which manipulates FAT
directory entries and do not change the host file at all. Most of them runs under MS-DOS
5.0 only. These viruses have to be excluded from a disinfection test, too, even if some
scanners are able to repair them. However, it cannot be tested without major problems.

Another idea is to only use some viruses from which it is known that the original state of
the file can be restored, like Cascade or No_Frills.1358 (COM); Delwin (EXE); Tremor and
One_Half (COM/EXE); W95/CIH and W95/Marburg (PE-EXE). Only those programs that
are able to restore infected files completely get the points, although some of the above
viruses are not easy to disinfect. Examples are One_Half or W95/CIH, which writes parts
from their viral code all over the file. However, such cases should not be a problem for a
good anti-virus program and it is hard to see why some scanners are still unable to remove
such viruses correctly, i.e., leaving no viral parts in the file. Additionally, a test should be
made about how the scanner handles runtime-compressed files and double-infected files.
A good scanner has to find the double infection while cleaning the file of the first virus and
should be able to remove all viruses in the file recursively.

A special situation is the cleaning of an infected Trojan horse. The scanner should be able
to clean the virus from the Trojan horse and in the second step, the Trojan horse has to be
deleted, because such kind of malware cannot be disinfected. It should be noted that there
are some backdoors like BackOrifice 2000 (the original distribution) that are not disinfected
properly when infected with such things as the W95/CIH virus and after being disinfected,
some scanners were unable to find the backdoor anymore.

The tests on disinfecting macro viruses are really hard, because there is no exact solution
to decide if a scanner has cleaned the file correctly or not. Office ’97 and 2000 files are
especially complex to parse and to clean correctly. Therefore, the tester can only have a
short look if the file can be opened after cleaning without errors. In the case of user
macros, the macro virus warning should be displayed by Word or Excel (if it was not
disabled). If there were only viral macros in the file, the macro warning must not appear.
The tester should look to see if the file can be modified by inserting pictures and texts and
if the file can be saved and printed (to a file only, to save paper). If all of these tests are
successful, the tester should look to see whether the file is still able to handle user macros
and if those macros run correctly. For this, a short MessageBox function test should be
suitable, but some scanners remove the macro part so badly that is impossible to use
word macros any longer. Existing user macros should still be complete in all streams and
executable. If all of these tests are successful, it is very likely that the files were cleaned

EICAR 2000 Best Paper Proceedings

246

correctly, but unfortunately, there is still the chance that the files have some leaks in their
internal structure and will crash on later modifications. Such tests should be done not only
for Word, but for Excel (including excel formula) and PowerPoint on more than just one file
and virus.

Memory detection tests

It is very time-consuming to test the memory detection of viruses, because the system has
to be infected for this, whether it is a boot or file virus. While testing boot viruses, often the
emergency disc is needed, because Windows does not run correctly or only starts in “ safe
mode” . Other viruses cause no problems, but it depends on the computer, the version of
Windows and the virus itself. For example, AntiEXE.A or Parity_Boot.B run well under
Windows ‘9x, but viruses like Ping_Pong do not, because they only run on old 8086/8088
systems. However, it is quite tricky to test these viruses, because some Windows-based
anti-virus programs are not able to disinfect the virus while it is in memory and some are
unable to find it, others do not run and/or display the correct message instructing the user
to start the system from the emergency disc. This procedure requires significant time,
because after each test, the original state has to be recovered again using tools like
DriveImage or Ghost.

Some file viruses like W95/CIH are known to infect systems without a problem, but it
should be kept in mind that not all viruses go memory resident, like W95/Marburg, which is
a direct file infector. In fact, an anti-virus program that is unable to find a memory infection
will actually help the virus to spread further by simply scanning the files on the hard disc or
network drives. The anti-virus programs vary quite a lot in this point. Some are able to
disinfect the virus in memory, but do not display a notice about it. Others only display a
message that the program was modified and should be installed again. However, the last
suggestion does not help the user, because the files will be infected again and again.
Some programs are unable to find such viruses in memory and use a quite interesting trick
to disinfect files. If they are unable to detect the virus in memory, they clean the files, a
virus like W95/CIH will infect it again, the program would search for a virus in the file and
they will clean it again and again - and the program will hang in an endless loop. Because
of this, some programs uses a trick, whereby they do not clean the file completely, but they
leave the infection marker of the virus intact and so the virus will not infect the file again.
After a reboot, the system is clean and virus-free. It should be noted that whenever a
memory infection has been found and the program is unable to disinfect this one in
memory, a message should be displayed instructing the user to boot from the emergency
boot discs and what should be done to get the system disinfected completely.

Boot-up-scanners and emergency boot discs

The last chance to scan, modify or clean a system without problems - or trigger functions
of windows-based viruses like W95/CIH - occurs before Windows ‘9x gets control. For this
situation, some companies have written boot-up-scanners, most of them are started in the
AUTOEXEC.BAT file. They scan the memory, the system areas like all boot sectors or
MBRs, and some files needed in order to start Windows correctly. For example, the root
directory including command.com and some files from the Windows directory are scanned
before Windows 9X gets control of the system. Unfortunately, most of the products do not

EICAR 2000 Best Paper Proceedings

247

find Windows-based viruses, because they do not scan a single PE-EXE file, like calc.exe
or sol.exe. But it would be a great chance to detect them at this point, because the virus is
not active at this time and the boot-up-scanner could prevent further infections. The
program could scan the Office global macro directories to hinder infection by a macro
virus, but this is not necessary because it requires too much time at this point (and it is
more likely that a user will switch this protection off) and the memory-resident guard will
prevent infection by such a virus. It is a good idea for the boot-up-scanner to not only work
with the known virus signatures but to creates checksums over the system parts. In
emergency situations they could be restored - from the hard or floppy disc. All these things
can be tested and should be documented.

Usually one ore more boot discs can be found in the anti-virus package from which the
system could be repaired after a virus outbreak. Some of the products want the CD to start
programs from there, others only need the floppy discs that have to be inserted one after
each other. Some programs can be started directly while booting from the CD, but most of
the time, the CD (or the discs) are not up-to-date and the virus that harms the system may
not be found or can be found by heuristics only. However, most of the time, there is no
problem because most ITW viruses are old, except for macro viruses. Such boot discs
should be checked if they exist in the package or the user has to create them. The boot
discs need to be checked to determine if they work correctly, for example if they are
bootable (some are not) and if they contain a scanner (some are bootable only, no more).
The problem is, that every company has to pay license fees for using DOS, so some of
them have written their own DOS versions in past, but a Linux boot disc containing a Linux
virus scanner could be used, too. In this case, the disc content cannot be viewed under
DOS, because of a different file system (ext2). However, they still run correctly and can be
tested. Another problem is the data integrity of the disc - some are really old. Using the
boot disc, the tester should look to see if it is able to find a sample infection by ITW viruses
and if they can be cleaned. However, in order to make the program still fit on a floppy disc,
some companies leave parts of their signatures off and/or compress them. As a result, the
scanner on the rescue disc is unable to find macro viruses. Of course, such limitations
should be noted in an exact test, but most of the time, it is enough to write down which
philosophies the boot disc follows and whether this is acceptable or not. It should be
noted, that if a user creates his own rescue disc, a virus could have already infected the
system and could be in memory and so the rescue disc could also be infected. Such discs
would be useless. It is a better solution for the vendor supplies it’s own, write-protected
rescue disc set for this reason - at least the floppy disc (or bootable CD-ROM) to start the
system. New Windows ’9x CDs have the feature enabled, to start from them, too.

Test for compressed and archived files

It is rather easy to test the ability of the on-demand scanner to scan inside runtime-
compressed and archived files if they are prepared, because they have simply to be
scanned. After this, the tester is able to reveal the types of runtime-compressed files the
program is able to scan and the types of archives that can be processed. For the recursive
scan test, it should be noted, that if a program is, for example, only able to scan inside ZIP
files, but not inside ARJ files. It can scan ZIP à ZIP, but not ARJ à ZIP and it can finally
process archives recursively, which it has been shown because it was able to scan ZIP
files recursively, however it does not know what to do with ARJ archives and the second

EICAR 2000 Best Paper Proceedings

248

test has failed. Another test could show if the program is able to clean infected files in their
archives or not - maybe recursively, too. Password protected archives cannot be
processed in real-time, even if some passwords are easy to restore. Therefore, no scanner
would be able to scan inside or clean such files without a list of often used passwords or
backdoor-keys.

Macro virus related tests

It is easy to test some of the abilities a good scanner has while scanning in OLE files. For
this type of testing, the created test files (see part I) should be used to demonstrate it’s
ability to perform scanning in special cases or not - the results can be found in the report
file or on screen. This includes the ability for the scanner to scan inside embedded sub-
documents and native RTF files and it’s ability to clean them correctly (see disinfection
tests for macro viruses). A second study should include testing to determine if the program
is able to leave the user macros for Office ’95 and ’97 files intact while cleaning and if the
scanner is able to find viruses in encrypted files. It should be able to disinfect Office ’95
files with or without removing the password protection. In the case of Office ’97, the
scanner should not try to disinfect the files - complex documents cannot be opened after
such attempts in many cases. A program should inform the user about it’s unsuccessful
disinfection attempt and substitute the viral macros with a message stating that a complete
cleaning was not possible and informing the user that the now harmless macros have to
be removed . In the Office 2000 tests, the scanner has to show that it is able to deal with
these files (see preparing the test files for macro viruses section).

Time, hard disc and memory requirement tests

The performance of anti-virus programs depends on the accuracy of virus detection and
disinfection. If it only determines the possibility of a virus infection much less time is
required than for an exact variant detection in most cases. The same applies to archives -
some programs scan archives, others skip them because they are unable to unpack the
archive and scan inside it. Such files can be found in most Windows installations, because
the Java class archives are simply (in old versions renamed) ZIP files. It is not a good idea
to test the scanner speed using the Windows and the Program Files directory, because the
size of it will be different in every installed anti-virus product. First, some scanners copy
VXDs and DLLs to the Windows directory and second, most scanners will be installed in
the Program Files directory. In this case, it could be a good idea to use the false positive
(e.g. non-viral) testset (that should contain usual Windows programs and DLLs) to test the
scan speed and get comparable results - for both normal and archived files in separated
tests. This has to be done separately from the other scan speed test. It is useless to test
the speed of disinfection time of a program, because some are very accurate and look to
determine whether the program is damaged and perform some tests, but others only try to
heal them without any knowledge about the consequences. It should be noted that a
program that needs more time on scanning or disinfection could be the better one in many
cases, but this is not always true. Therefore, this is not an indicator of the quality of the
program.

The hard disc requirements are easy to test. For this, the free hard disc space before and
after the installation should be taken and compared. It is not a good idea, to test only the

EICAR 2000 Best Paper Proceedings

249

directory size of the installation directory, because shared DLLs and VXDs from the
program will be found in the Windows directory, too (see above). Only the swap file causes
a problem - it should be moved to an other drive or deactivated (if possible), because the
size changes regularly and will be different after every reboot.

The next problem is to test the memory requirements of the virus guard, because Windows
is only equipped with inexact tools to determine this. After every reboot, different free
memory sizes are shown. Additionally, not only the memory a program requires is
important, but also the resources the program actually holds are relevant. Therefore, it
makes sense to test using an older computer with Windows ‘9x running slowly (like an 386
or 486) and low memory (8 or 12 MB RAM). After installing the guard (it has to scan all
files at open) and performing a reboot, the tester should look to determine the amount of
time that is needed for copying all files on the disc, to a network drive, or simply to NUL,
because in this case memory requirements and system resources can be tested together.
The actual slow-down caused by the on-access scanner is disclosed and can be
compared with other programs. It should be noted, that the Windows swap file can cause a
problem, because xcopy will stop if it cannot read a file - like in this case. A solution could
be, to create the swap file on an other drive. Deactivation causes only a blue screen,
because there is not enough memory available in the test system.

Other tests

It should be impossible for an unprivileged user or a malware program to deactivate or
uninstall the anti-virus program without notice to the administrator. Therefore, the tester
should delete as many of the files in the installation directory of the anti-virus program and
the Windows\System directory, where often anti-virus databases or VXDs can be found.
Normally, it should be impossible to do this, such as when the files are opened or locked. If
files can be deleted, the program should notice that some parts of them are missing after a
reboot and it should display an error message describing the problem and what could be
done to correct it. Often, only error messages with confusing numbers or wrong error
messages are displayed, which do not help the user in any way. Another test can be done
to registry entries, to determine if they are removed and to see what error messages are
displayed in these cases. It should be noted that usually many registry settings in different
locations can be found for each program.

A good program should perform a test of itself and the virus database, so that the tester is
able to analyze what happened. The tester can manipulate the program or the virus
database by overwriting slack areas in the program or by overwriting more than just some
bytes in the database with random values. In both cases, the program has to display an
error message and should terminate.

After cleaning macro virus infections, the program should warn the user about the
possibility that the macro virus protection was switched off by the virus (FitzGerald 1999).
The program should be able to restore the original settings if the user want this since he
would not notice it until the next infection.

A good anti-virus program has to warn the user if it’s getting too old. So the tester should
start the program with the PC’s date set to a future date, like one year in future and check

EICAR 2000 Best Paper Proceedings

250

to see if the program displays a message stating that the program and/or the signature
base is too old to run and should be updated immediately. It should be noted that those
dates could cause interactions with backup programs or the network with switched-on time
synchronization.

Part III - Documenting and Editing the Test Results

After finishing all of the tests and evaluation parts, the tester will have collected a lot of
information about the results of the anti-virus programs. Now it is time to compress the
information and write concluding reviews about the programs. Furthermore, the reviews
have to be edited according to the different kinds of audiences of the review.

Getting the Final Results

A final result table of every program including the detection scores, successful repair
attempts and all of the yes/no criteria should be prepared. Usually it is too big to be
published in a magazine in its entirety, but it should be available, maybe on the magazine
CD or online in the Intra- or Internet. It is especially important for the anti-virus companies
to have access to such tables so they can see what has gone wrong and what should be
improved as soon as possible. Usually, the anti-virus researchers cannot wait to get all the
report files about the programs and documentation regarding the test.

To develop the final results for the different group of users, weights applicable to the
different groups of users should be applied and the products should be sorted after the
final result score is tabulated.

Writing the Final Review

Before writing the final conclusion about a product, it should be reviewed and compared
with previous tests to determine if the company has corrected formerly detected bugs and
mistakes or made some improvements regarding detection. Additionally, the tester should
make some screen shots of the products which gives an overall impression of the
program.

The tester himself should write the article for the tester is the one who knows best what
has been tested, what was good or bad, how the products vary because of different
philosophies and the tester’s final impression about the program. If somebody else writes
such text only with the information from the final result table and some remarks by the
tester, it is very likely that the text will give a bad impression about the products and wrong
conclusions are drawn.

It could be a good idea, to send the producers the text and tables before publishing to let
them check if all results are correctly, if sentences could be interpreted a wrong way and
such things. Another idea is, to ask some people from the anti-virus companies if they
want to write one or two sentences about the test or the tested product. This can be a “we
are working on it” in case of problems or “ we are happy about the results” . For this, the
companies have to know the results or at least the problems found.

EICAR 2000 Best Paper Proceedings

251

Often, for example, if the page limit given by the publisher is exceeded, the article is re-
edited by an editor. In this case, sometimes the “new” version contains bugs after this
procedure. Therefore, the tester should proof the galley carefully.

After Publishing the Review

After the text has been published, contact with the anti-virus programmers should be
maintained. Procedures and test strategies should be discussed with them and they often
have ideas how to improve some points. However, sometimes it is like in the dark ages,
the messengers of bad news are killed with the comment that the tester is the bad one, not
the company. Maybe it helps if the tester sends the complete result table and the full and
shortened version of the texts to the anti-virus companies.

Conclusion

Although a lot of features can be tested, the programs can only show their true quality in
real world scenarios. The quality of a test depends on the test environment, e.g. the virus
collection or experience of the tester. It is similar to a school environment where people
learn a lot and have to write exams about it. They will be tested in the real world and only
this can show how much they actually learned. Regardless, anti-malware tests should help
the professional or home user to determine the best program for his or her special
requirements to protect the system against viruses and other malicious software. Together
with backup strategies, cryptographic software and intrusion detection systems, the anti-
malware products should help to make the life in the networking world easier.

Unfortunately, no program exists that is the best in every category and the subjectivity of
the tester really determines which program will win for a special group of users. There are
too many things, like virus outbreaks or a big IT environment with some hidden surprises,
which can neither be reviewed nor tested as wished. Of course, reviewing such tests as
described in this paper should prevent the reader from buying completely the wrong
program, the frustration, the loss of time and money experienced as result of a poor buying
decision.

EICAR 2000 Best Paper Proceedings

252

References

Abrams, R. (1999). Giving the EICAR test file some teeth. Proceedings of the Virus
Bulletin Conference ’99, pages 275-280.

Bontchev, V. (1993). Analysis and Maintenance of a Clean Virus Library. Available at:
ftp://ftp.informatik.uni-hamburg.de/pub/virus/texts/viruses/virlib.zip

Bontchev, V. (1999). The “pros” and “cons” of WordBasic Virus Upconvertions.
Proceedings of the EICAR Conference 1999

Brunnstein, K. & Schmall, M. (1999). Makrokosmos. [Macro universe]. c’t magazine
07/1999, pages 146f., Hannover: Verlag Heinz Heise

Brunnstein, K. & others (1999). VTC University of Hamburg Anti-Malware Product
Test "1999-03". Available at: ftp://agn-www.informatik.uni-hamburg.de/
pub/texts/tests/pc-av/1999-03

Chi, D. (1999). Microsoft Office 2000 and Security Against Macro Viruses, a white
Paper. Santa Monica: Symantec Anti-Virus Research Center (SARC)

Coursen, S. (1998). Taming the Wildlist. Proceedings of the Virus Bulletin
Conference ’98, pages 243-249

Ducklin, P. (1995). EICAR Anti-Virus test file. Available at:
http://www.eicar.com/anti_virus_test_file.htm

Ducklin, P. (1999). Microsoft Office 2000 and Digital Macro Signatures, a white
Paper. Oxford: Sophos Plc

Ducklin, P. (1999b). Counting Viruses. Proceedings of the Virus Bulletin Conference ’99,
pages 73-85.

FitzGerald, N. (1999). Monkeying with the Wildlist. Proceedings of the Virus Bulletin
Conference ’99, pages 247-268.

Gordon, S. (1995). Are Good Virus Simulators Still a Bad Idea? Available at:
http://www.commandcom.com/html/virus/res/simulator.html

Gordon, S. & Ford, R. (1996). Real World Anti-Virus Product Reviews and Evaluations -
The current state of Affairs. Proceedings of the 1996 National Information
Systems Security Conference. Available at:
http://csrc.nist.gov/nissc/1996/papers/NISSC96/paper019/final.PDF

Gryaznov, D. (1994). Simboot: A new tool for testing scanners. Proceedings of the
EICAR Conference 1994, pages 157-164

Hansen, R. (1999). Elchtest für Windows [Elk test for Windows]. c’t magazine
17/1999, page 90, Hannover: Verlag Heinz Heise

Heisel, M. (1998). Einführung in die Algorithmen und Datenstrukturen. [Introduction to
algorithms and data structures]. Otto-von-Guericke-University Magdeburg,
part 0, page 3

Helenius, M. (1998). Automating Anti-Virus Product Evaluation. Proceedings of the
Virus Bulletin Conference ’98, pages 251-259

Jang, D. (1998). Trend Chip Away Virus – reviewer’s guide. Taiwan: Trend Micro
Klotz, K. (1997). Getäuschte Viren-Tester. [Deceived virus testers]. CHIP 06/1997,

page 9, Munich: Vogel Verlag
Link, R. (1999), the list is available online at: http://rainer.w3.to
Luckhard, N. & Siering, P. (1999). PC-Parasiten. [PC parasites]. c’t magazine

07/1999, pages 140-144, Hannover: Verlag Heinz Heise
Marx, A. & Michl, M. (1999). So schützen Sie Ihren PC vor Viren. [How to protect

your PC for viruses]. CHIP 02/1999, pages 142-151, Munich: Vogel Verlag

EICAR 2000 Best Paper Proceedings

253

Marx, A. & Günther, V. (1999). Einsatz der Virenkiller. [Operation of the virus
killers]. WIN 02/1999, pages 186-195, Munich: Vogel Verlag

Marx, A. (1999a). Test: Makro-Virenschutz bei Office 2000 ist nicht ausreichend.
[Test: The macro virus protection in Office 2000 is not sufficient]. CHIP
08/1999, page 12, Munich: Vogel Verlag

Marx, A. (1999b). Viren-Special: Im Vergleichstest : 13 Antiviren-Programme. [Virus
Special: Comparison test of 13 anti-virus programs]. CHIP 11/99,
pages 230-237, Munich: Vogel Verlag

Marx, A. (1999c). Gefährliches Office 2000. [Dangerous Office 2000].
http://www.pcwelt.de/onlinewelt/showonline.asp?dir=o2000

Polk, W. & Bassham, L. (1992). Guide to the Selection of Anti-Virus Tools and
Techniques. Available at: http://csrc.nist.gov/nistpubs/800-5.txt

Pomberger, G. & Blaschek, G. (1996). Software-Engineering: prototyping und
objektorientierte Software-Entwicklung. [Software-Engineering: prototyping
and object-oriented software engineering]. Munich and Vienna: Hanser
Verlag, 2nd edition 1996

Raiu, C. (1999). The little fixed variable constant. Virus Bulletin 10/99. Oxford.
Available at: http://homepages.gecad.ro/craiu/papers/

Rötzer, F. (1999). Cult Of The Dead Cow gegen Microsoft. [Cult Of The Dead Cow
against Microsoft]. http://www.heise.de/tp/deutsch/inhalt/te/5102/1.html

Scheidl, G. (1999). Virus Naming Convention 1999 (VNC99). Austria: Ikarus
Software. Available by mail from: scheidl.g@chello.at

Sophos (1999). Low-down on virus names. Sophos News, August 1999
Oxford: Sophos Plc

VMware (1999). http://www.vmware.com
Wack, J. & Carnahan, L. (1989). Computer Viruses and Related Threats:

A Management Guide. Available at: http://csrc.nist.gov/nistpubs/sp500166.txt
Wallmüller, E. (1990). Software-Qualitätssicherung in der Praxis. [Software quality-

management in praxis]. Munich and Vienna: Hanser Verlag, 1990
Whalley, I. (1999). Testing Times for Trojans. Proceedings of the Virus Bulletin

Conference ’99, pages 55-67.
Wildlist (1999). Wildlist Organization. http://www.wildlist.org/WildList/wildlist.html
ZDTag (1999). Virus Security Management Products Comparison and

Stress/Scalability Testing. http://www.zdnet.com/zdtag/reports/navirus.pdf

