

Testing Exploit-Prevention Mechanisms in Anti-Malware Products

Andreas Marx & Maik Morgenstern AV-Test GmbH, Magdeburg, Germany

http://www.av-test.org

Presented at the CARO Workshop 2009 in Budapest, Hungary (May 5, 2009)

Copyright © 2009 AV-Test GmbH

Contents

- Introduction
- Basics of the testing
 - Introduction of the exploit
 - Tracking the effect of the exploit
 - Tracking the reaction of the anti-malware product
 - Reproducibility and Comparability
 - Challenges
- Conclusion

eh

Introduction

- Simple scanning of single files may still be enough to protect users in some, but not in all cases...
 - Gateway scanners vs. end-user (client) AV products
 - CRC detection of known "bad" files (easy to do) vs. full reliable exploit detection (requires a lot of research)
- Many of today's products have much more protection features to offer
- Testing needs to reflect these additional protection mechanisms:
 - Whole product evaluation instead of only testing (possibly misleading) on-demand scanning capabilities

Introduction

- Therefore "Dynamic Testing" strategies were introduced:
 - The Importance of Re-creating In-the-wild Infection Conditions for Testing Multi-Layered Security Products (Symantec, CARO 2007)
 - Testing of "Dynamic Detection" (AV-Test, AVAR 2007)
 - AMTSO Best Practices for Dynamic Testing (AMTSO 2008)
- Malware threats are introduced via typical infection vectors and actually run (executed) on the system
- Anti-malware products can stop the malware at different stages, utilizing their whole set of features, e.g.:
 - URL Blocking, web reputation services
 - Static detection by signatures or heuristics
 - Dynamic detection by observing the behavior of the malware

Introduction

- Exploits can be an important part during the infection process (and often are today)
- Anti-malware products consider this and provide special detection and prevention capabilities
- Testing has therefore to consider exploits as important part of an attack as well
- On-demand scan of exploit code is not a sufficient test! But what else?

- The "Dynamic Testing" strategy will be applied and extended resp. specified:
 - Scenarios as realistic as possible in an isolated and safe environment are being used in the test
 - Explicitly looking at exploits
 - All stages of an infection and all possible reactions of the anti-malware product will be observed (the utilization of exploits being one of the stages)
 - This enables the tester to review the whole product, instead of only single features, e.g. the on-demand scanner
 - The view can always be narrowed to only the exploit part if desired (but usually shouldn't unless for very special tests!)

0 eb4135c4 c eb413690

000000000

- Basic approach
 - The exploit code (or malware that utilizes exploit code) is introduced to the system
 - The effects of the exploit (and further associated components) on the system are tracked
 - The reactions of the anti-malware product are being observed (if any)
 - The final system state is observed and the detection and prevention success of the product is assessed

- Introduction of the exploit
 - The vulnerable applications in the vulnerable version have to be installed on the system
 - Real in-the-wild exploit code should be the focus, instead of proof-of-concept code
 - The exploit code should be accessed through the usual infection vector, which is different for different targeted applications
 - It has to be proofed that the exploit code actually works

- Tracking the effect of the exploit
 - The state of the system before introducing the exploit has to be known
 - File system, processes, registry, loaded modules in processes, network traffic ...

eh4

- The changes to the system after executing the exploit can be tracked
- This allows to tell what happens on the system
- If nothing happens, the anti-malware product can not be blamed for not detecting anything
- Compare our "Dynamic Testing" paper

- Tracking the reaction of the anti-malware product
 - Does the product present any messages or does it write any information to report files?
 - Are actions of the exploit code blocked?
 - Whole exploitation process detected and blocked?
 - Only parts of the process blocked?
 - Are malicious modifications, when detected, reverted afterwards?
 - System states are again carefully watched to observe what happens on the system and what is being prevented by the anti-malware product
 - Again: compare our "Dynamic Testing" paper

- Detection and prevention success
 - Did the product present any messages or wrote any information to report files?
 - What has been detected and how has it been detected?
 - What has been prevented?
 - What was the exploit able to do on the system?
 - Have these changes been reverted and created components been removed?

- Reproducibility and Comparability
 - Same problems as with "Dynamic Testing", e.g.:
 - Online sources of malware may be dead or deliver other files (when an exploit tries to download further components)
 - Overall different behavior during different test runs (certain antimalware products may be detected by the malware)

eb4135c eb41369

- Malware might behave differently when recognizing it is being observed or being run in an artificial environment
- Solutions are the same as well, e.g.:
 - Record queries once and replay them during the test
 - Perform a statistical significant number of tests to rule out the effect of behavior changing malware
 - Use minimal invasive means of observation
 - Use real systems, no virtual machines
 - Use real (but limited) internet connection, no simulated ones

- Further challenges
 - Sample throughput is usually small
 - Tests are very complex (many manual steps involved)
 - Analysis of the test results is very complex
 - Choice of viable samples may be limited
 - Relevance of samples
 - Not every sample is relevant (e.g. 2 year old exploits for outdated vulnerable application versions)
 - Exploits for fixed vulnerabilities in general
 - Exploits for very seldom used software
 - Database of vulnerable applications required
 - Exploits for vulnerabilities in anti-malware products
 - Valid for a test set? How to test?

eb4135

Conclusion

- Testing the exploit-detection and prevention mechanisms of anti-malware products can be performed with approaches from "Dynamic Testing"
- Similar and some more problems occur
- Similar solutions can be found
- Still some open problems

Conclusion

- It is necessary to be able to process more samples to have statistically significant numbers
 - Reduce the complexity of the tests
 - Risk: tests may become irrelevant and unrealistic
 - Automate more steps
 - Risk: automation can be prone to errors
- Surely: the times of simple tests that process hundreds of thousands of files have passed away
- But can the complexity of new testing approaches be handled?

8013bb3f 8013bb3f eb4135	c4	00000000	eb4135c4	eb413ffc
AV. IESI	O C	eb413f6c eb413674 ab413f6c	80134f5b	eb413670 eb413854

Thank you very much for your attention!

Are there any questions?