Test Strategies & Common Mistakes
International Antivirus Testing Workshop 2007

Andreas Marx, MSc.
CEO, AV-Test GmbH

http://www.av-test.org
Table of Content

• About AV-Test.org
• Tests of Security Software
 – Prerequisites for Evaluation and Testing
 – Evaluation and Testing the Programs
 – Documenting and Editing the Test Results
 – Current project: cross-reference lists (XREF)
• Questions & Answers
About AV-Test.org

- Founded as company in 1996 and 2004 (GmbH)
- About 15 full-time employees and freelancers
- Working for 45 computer magazines world-wide
- Working for many companies as consultants
- People are involved in AV programming, testing and research since 1991 (as University project)
- Our test lab is equipped with more than 100 PCs
- Large collection of malware and clean files (60 TB)
- Over 2,000 product tests per year
Prerequisites for Evaluation and Testing

- Tester has to be independent from the companies he wants to review (sponsored reviews need clearify the fact that the test was paid by a specific organization)
- The tester needs to know what he wants to do → Detailed test plan is important
- A secure, separated network (which is not connected to any external networks like the internet) is required as test environment → Dedicated test network
- Detailed knowledge about malware is required → “Reverse Engineering Skills”
- Every malware file needs to be checked (e.g. replicated and analyzed) if it’s working properly or possibly corrupted before it’s included in any collection used for tests!
- Reminder: Malware is not a toy!
Evaluation and Testing the Programs (I)

• The ‘classic’ criteria: Detection rates
 – Virus scanner should detect viruses...
 – Easiest method: One simply scans a formerly created malware database (log files? how to count? crashes?)
 – Differentiation possible between WildList and Zoo tests (old vs. new files?), intentionally malicious software (e.g. viruses, worms, bots) and potentially unwanted software (e.g. dialer, jokes, ad-/spyware) etc.
 – Often, only the on-demand scanner (because it’s so easy to do?), but not the on-access guard is reviewed
 – Results in many cases meaningless (99.5 vs. 99.7%)
 • Exact CRC/MD5 detections of files by many AV products
 – Malware databases are often badly maintained
Evaluation and Testing the Programs (II)

• The counterpart: False positive tests
 – Less frequently tested, even if scanners with lots of false positives (and possible high malware and heuristic detection rates) can’t be used on any production PC
 – A preferably big database of known to be good / harmless files is required (at least, some 100,000)
 – Sources: CDs and DVDs, ftp and http server mirrors
 – Should be sorted after importance / priority (e.g. severity of a false positive: Windows system file vs. Office program vs. ‘any’ unknown 3rd party tool)
 – Procedures: Scan a system with a high number of applications installed on it vs. scan installer files ‘as is’
Evaluation and Testing the Programs (III)

• Today, cleaning is getting more important:
 – Never-ending and increasing malware stream
 • A high number of PCs will get infected sooner or later
 – Malware is using advanced self-protection techniques (including rootkits) which are working better than similar functions implemented in malware scanners
 – Procedure: Infect a system and test the cleaning functions (the scanner might not detect all malware-related pieces, but it should clean everything!)
 – Important: Are all files and the Windows Registry treated properly? Are all programs still working? (Some less important traces might be left behind, e.g. skin files)
 – Very complex and time-consuming test
Evaluation and Testing the Programs (IV)

• Even more important: Prevention
 – What kind of techniques are offered by the products to detect (and prevent) the infection by unknown malware?
 – Keywords: Application Control Mechanisms, Host-based Intrusion Detection & Prevention Solutions (HIDS/HIPS)
 – Procedure: Start a malware and see what will happen
 – Important: The test environment must look very real, simulated internet connection, no virtual machines
 – Compare the number of warning messages during normal operation (including patches which are installed by Windows Update) vs. during malware execution
 – What kind of critical actions are blocked or not?
 – Can malware changes be undone (if so, how well?)
Evaluation and Testing the Programs (V)

• Testing (Outbreak) Response Times
 – Question: At which time was my PC protected?
 – Create an archive with all ever-released AV updates (e.g. signatures, engine and program files)
 – Use a (scripted) multi-scanner system, plus some manual tests
 – Test of all archived updates against the different scanner versions in a given period of time (start date, end date?)
 – Look for heuristic and proactive detections (retrospective tests), reaction times, plus detection and name changes

→ Future development: Application Lifecycle Testing
 • Not only a single update is tested, but all available ones
 • How did the scanner perform over a period of time in case of reliability of detection, avoiding false positives etc.?
 • We want to show how the products are performing in “real-life”
Documenting and Editing the Test Results

- **Representation of the results**
 - Write what was tested and how so a third party can understand it
 - Tell, what’s important and what’s not so essential!
 - Summarize all results into manageable tables
 - Not all data will fit into tables
 - Additional comments are essential
 - Give the tested developers some time for proofreading of results and verifying the samples used for the test
 - Remove samples from the test which are questionable or not malicious
 - Publication in readable form
 - Use a clear document style and structure with easily readable fonts
 - HTML pages or PDF files are “universal”

- **After publication…**
 - Keep contacts to the developers
 - Keep on discussion about current and future test strategies
Creation of cross-reference lists of malware names (code name: XREF) and known bad files which are unsuitable for testing

<table>
<thead>
<tr>
<th>File Name</th>
<th>AVG</th>
<th>AntiVir</th>
<th>BitDefender</th>
</tr>
</thead>
<tbody>
<tr>
<td>MYTBAE.EXE</td>
<td>I-Worm/Mytob.BB</td>
<td>Worm/Mytob.BM</td>
<td>Win32.Worm.Mytob.FE</td>
</tr>
<tr>
<td>MYTBAH.EXE</td>
<td>I-Worm/Mytob.AE</td>
<td>Worm/Mytob.AH</td>
<td>Win32.Worm.Mytob.X</td>
</tr>
<tr>
<td>MYTBAL.EXE</td>
<td>I-Worm/Mytob.AL</td>
<td>Worm/Mytob.BF</td>
<td>Win32.Worm.Mytob.AC</td>
</tr>
<tr>
<td>MYTBAM.EXE</td>
<td>I-Worm/Mytob.AC</td>
<td>Worm/Mytob.BF</td>
<td>Win32.Worm.Mytob.V</td>
</tr>
<tr>
<td>MYTBAK.EXE</td>
<td>I-Worm/Mytob.AM</td>
<td>Worm/Mytob.BF</td>
<td>Win32.Worm.Mytob.AN</td>
</tr>
<tr>
<td>MYTBAU.EXE</td>
<td>I-Worm/Mytob.AP</td>
<td>Worm/Mytob.BA</td>
<td>Win32.Worm.Mytob.AA</td>
</tr>
<tr>
<td>MYTBAW.EXE</td>
<td>I-Worm/Mytob.AK</td>
<td>Worm/Mytob.AU</td>
<td>Win32.Worm.Mytob.Y</td>
</tr>
<tr>
<td>MYTBAW.EXE</td>
<td>I-Worm/Mytob.AQ</td>
<td>Worm/Mytob.AW</td>
<td>Win32.Worm.Mytob.AB</td>
</tr>
<tr>
<td>MYTBAU.EXE</td>
<td>I-Worm/Mytob.AR</td>
<td>Worm/Mytob.AX</td>
<td>Win32.Worm.Mytob.AA</td>
</tr>
<tr>
<td>MYTBBB.EXE</td>
<td>I-Worm/Mytob.AU</td>
<td>Worm/Mytob.BG</td>
<td>Win32.Worm.Mytob.AE</td>
</tr>
<tr>
<td>MYTBBD.EXE</td>
<td>I-Worm/Mytob.AS</td>
<td>Worm/Mytob.BE</td>
<td>Win32.Worm.Mytob.AB</td>
</tr>
<tr>
<td>MYTBBI.EXE</td>
<td>I-Worm/Mytob.FW</td>
<td>Worm/Mytob.ED.1</td>
<td>Win32.Worm.Mytob.BC</td>
</tr>
<tr>
<td>MYTBBJ.EXE</td>
<td>I-Worm/Mytob.AI</td>
<td>Worm/Mytob.AS</td>
<td>Win32.Worm.Mytob.T</td>
</tr>
<tr>
<td>MYTBBK.EXE</td>
<td>I-Worm/Mytob.BF</td>
<td>Worm/Mytob.BR</td>
<td>Win32.Worm.Mytob.M</td>
</tr>
<tr>
<td>MYTBBM.EXE</td>
<td>I-Worm/Mytob.BO</td>
<td>Worm/Mytob.BW</td>
<td>Win32.Worm.Mytob.AF</td>
</tr>
</tbody>
</table>
Questions & Answers

• ???

• Note: Many testing papers can be found at:
 http://www.av-test.org → Publications → Papers